Consider a set box boxes. Say we have 30 boxes.(adsbygoogle = window.adsbygoogle || []).push({});

And then we have x number of black balls and y number of white balls

And these balls are stacked in the boxes. The total nuber of ways of stacking them is easy to find, but a much harder problem is to find the probability that for any one of the 30 boxes the ratio of black balls to white balls exceeds a certain value donoted as say 'p' where the number of black balls must exceed another variable denoted 'q' for this ratio to be valid.

For example if you have 10 black balls 5 white balls and 30 boxes find the probability that in any one of those boxes there will be twice as many black balls than white balls assuming that there must be greater than 2 blacks balls in tat particular box. The balls are randomly placed in the boxes and the placement of one ball has no affect on the placement of another.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Balls and Boxes Complicated Problem

Loading...

Similar Threads for Balls Boxes Complicated | Date |
---|---|

I Dividing 4 balls over 4 boxes | Jan 26, 2018 |

I Statistical problem of drawing colored balls from boxes | Apr 12, 2017 |

Dragging colored balls off box in succession | Apr 15, 2015 |

Distribution of balls in a box (with a twist) | May 15, 2014 |

Balls in a box shaking experiment | Oct 2, 2012 |

**Physics Forums - The Fusion of Science and Community**