Banking of Roads: Understanding Centrifugal Force

  • Thread starter Thread starter kirakun
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the relationship between the curvature of horizontal road curves and the angle of elevation, specifically addressing the role of centrifugal force in this context. Participants clarify that centrifugal force, while not a fundamental force in circular motion, is treated as an inertial force in a rotating frame of reference. The derivation involves resolving the weight of the vehicle and the frictional forces to establish a balance with the centripetal force, emphasizing the importance of proper banking angles to prevent accidents on curves.

PREREQUISITES
  • Understanding of circular motion and forces, including centripetal and centrifugal forces.
  • Knowledge of basic physics principles, particularly Newton's laws of motion.
  • Familiarity with the concepts of friction and normal force in the context of inclined planes.
  • Ability to analyze forces in different frames of reference, particularly inertial vs. non-inertial frames.
NEXT STEPS
  • Study the derivation of the banking angle for curves in road design using the principles of centripetal force.
  • Learn about the effects of friction on vehicle dynamics during cornering.
  • Explore the concept of inertial forces in non-inertial frames of reference.
  • Investigate the implications of improper banking angles on vehicle safety and road design standards.
USEFUL FOR

Civil engineers, transportation planners, physics students, and anyone involved in road design and vehicle dynamics will benefit from this discussion.

kirakun
Messages
24
Reaction score
1
Hello,

I was browsing a derivation for the relationship between the curvature of horizontal road curves and the angle of elevation/banking. The derivation is shown on page 4 here: http://www.cdeep.iitb.ac.in/nptel/Civil%20Engineering/Transportation%20Engg%201/14-Ltexhtml/nptel_ceTEI_L14.pdf

There is one thing I cannot understand. Everything revolves around centrifugal force. It is here treated as a force having the same magnitude of a centripetal force but in the opposite direction.

Basically the derivation is done by first finding the component of the weight in the direction of the slope. The centrifugal force is then resolved and then force balance is used to equate the forces. (all in the direction parallel to the slope)

So my questions are:

1. If we resolve the component of weights and friction in the horizontal direction (instead of resolving the centrifugal force), we do not reach the same equation.

2. Where does centrifugal force come into action? This force does not exist from my knowledge of circular motion. Only centripetal force exists. This returns us to 1. , why not resolve the weight and frictional forces in the horizontal direction and equate the forces.

Thank you.
 
Last edited by a moderator:
Engineering news on Phys.org
kirakun said:
Hello,

I was browsing a derivation for the relationship between the curvature of horizontal road curves and the angle of elevation/banking. The derivation is shown on page 4 here: http://www.cdeep.iitb.ac.in/nptel/Civil%20Engineering/Transportation%20Engg%201/14-Ltexhtml/nptel_ceTEI_L14.pdf

There is one thing I cannot understand. Everything revolves around centrifugal force. It is here treated as a force having the same magnitude of a centripetal force but in the opposite direction.

Basically the derivation is done by first finding the component of the weight in the direction of the slope. The centrifugal force is then resolved and then force balance is used to equate the forces. (all in the direction parallel to the slope)

So my questions are:

1. If we resolve the component of weights and friction in the horizontal direction (instead of resolving the centrifugal force), we do not reach the same equation.

You're a budding engineer. Show us your calculations. Remember, a car in a turn wants to keep traveling in a straight line, tangent to the curve.

2. Where does centrifugal force come into action? This force does not exist from my knowledge of circular motion. Only centripetal force exists. This returns us to 1. , why not resolve the weight and frictional forces in the horizontal direction and equate the forces.

Thank you.

Because you are interested in the frictional force acting parallel to the road surface. If the curve is not banked at the correct angle for the maximum anticipated traffic speed, you could see cars flying off the banked road, causing injuries or deaths. That's why the bank angle is steeper at closed-circuit racing tracks, where speeds can reach 200 mph, than on regular roadways, where the posted speed limit is much lower.

https://courses.engr.illinois.edu/tam212/avb_09A186_small.jpg​
 
Last edited by a moderator:
  • Like
Likes   Reactions: 1 person
What I did was:

Let W = weight of vehicle
N = Normal reaction at surface acting on vehicle
F = Frictional force developed and y = coefficient of friction.
x = Angle of inclination

Resolving weight W perpendicular to the surface we have N = W cos x

The frictional force F = Ny
= y W cosx

Horizontal component of F = F cos x
= y W cos x cos x (Acting towards centre of circle)

Horizontal component of N = N sin x
= W cos x sin x (Also acting towards centre of circle)

But centripetal force = centrifugal force in magnitude

From circular motion theory, Centripetal force = \frac{MV^{2} }{R} = \frac{WV^{2} }{gR}
where R = Radius of curvature

Thus from Newton's 2nd Law of motion

\frac {WV^2}{gR} = y W cos x cos x + W cos x sin x

But the equation given in references actually point to:

\frac {WV^2}{gR} cos x = y W cos x + W sin x

which they further simplify.
 
Last edited:
kirakun said:
The frictional force F = Ny
That is correct, but ...
= y W cosx
... that is wrong. There is also a component of the centripetal force (times sin x) that is normal to the banked road.
 
AlephZero said:
That is correct, but ...

... that is wrong. There is also a component of the centripetal force (times sin x) that is normal to the banked road.

Isn't the centripetal force a resultant force, so it cannot be resolved?
 
kirakun said:
Isn't the centripetal force a resultant force, so it cannot be resolved?

I'm unfamiliar with forces that cannot be resolved.

Obviously, if the vector forces A and B can be combined into a resultant R, then R can be decomposed into components of arbitrary direction. That's what the dot, or inner, product is for.
 
SteamKing said:
I'm unfamiliar with forces that cannot be resolved.

Obviously, if the vector forces A and B can be combined into a resultant R, then R can be decomposed into components of arbitrary direction. That's what the dot, or inner, product is for.

Yes.
Resolving the centripetal along the surface and equating with the frictional force and the weight (In the same direction) gives the required equation...
 
kirakun said:
Where does centrifugal force come into action?
In rotating frames of reference. If you analyze the problem from the rest frame of the vehicle you have an inertial centrifugal force.
 
  • Like
Likes   Reactions: 1 person
A.T. said:
In rotating frames of reference. If you analyze the problem from the rest frame of the vehicle you have an inertial centrifugal force.

Yes changing frames of reference helped in finding the solution. Thanks everyone.
 
  • #10
nuetral banking

this any use ?
 

Attachments

  • p012.jpg
    p012.jpg
    18.7 KB · Views: 1,395

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K