Bar legend for a different function in mathematica

  • Context: Mathematica 
  • Thread starter Thread starter djymndl07
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
SUMMARY

The discussion focuses on adding a bar legend for the function g[t] in a Mathematica ParametricPlot. The user defines two functions, f[t] and g[t], and utilizes the ColorFunction option to apply a color gradient based on the values of g[t]. The solution involves incorporating the BarLegend function directly into the ParametricPlot command to visually represent the color mapping associated with g[t]. This approach enhances the interpretability of the plot by linking colors to specific values of g[t].

PREREQUISITES
  • Familiarity with Mathematica programming language
  • Understanding of ParametricPlot function in Mathematica
  • Knowledge of ColorFunction and ColorData in Mathematica
  • Basic concepts of function definition in Mathematica
NEXT STEPS
  • Explore advanced features of ColorFunction in Mathematica
  • Learn how to customize legends using BarLegend in Mathematica
  • Investigate the use of Rescale function for data normalization in Mathematica
  • Study the implications of color mapping in data visualization
USEFUL FOR

Mathematica users, data scientists, and anyone interested in enhancing data visualizations with color gradients and legends.

djymndl07
Messages
24
Reaction score
1
How Can I add bar Legend for g[t] in the following code in mathematica?
Thanks in advance?

f[t_] := t + 1
g[t_] := t^3 + 3*t + 12
ParametricPlot[{f[t]*Cos[\[Theta]], f[t]*Sin[\[Theta]]}, {t, 0, 1}, {\[Theta], 0, 2*Pi},
ColorFunction -> Function[{x, y, t}, ColorData["SolarColors"][Rescale[g[t], {g[0], g[1]}, {0, 1}]]]]
 
Physics news on Phys.org
Add
Code:
PlotLegends -> BarLegend[{"SolarColors", {0, 1}}]
to the ParametricPlot.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K