MHB Berk's question via email about approximating change

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Change Email
Click For Summary
The speed of sound in an ideal fluid is expressed as c = √(γRT), where T is the temperature in Kelvin. A 10% increase in temperature leads to an approximate change in speed, calculated using calculus. The derivative of c with respect to T is found to be d(c)/d(T) = √(γR)/(2√T). With a 10% increase in T, the resulting change in c is approximately c/20, indicating a 5% increase in the speed of sound. This analysis confirms the relationship between temperature changes and sound speed in ideal fluids.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
The speed of sound $\displaystyle \begin{align*} c \end{align*}$ in an ideal fluid is related to the temperature $\displaystyle \begin{align*} T \end{align*}$ (measured in $\displaystyle \begin{align*} ^{\circ} K \end{align*}$) by

$\displaystyle \begin{align*} c = \sqrt{\gamma \, R \, T} \end{align*}$

where $\displaystyle \begin{align*} \gamma \end{align*}$ and $\displaystyle \begin{align*} R \end{align*}$ are constants.

Suppose that $\displaystyle \begin{align*} T \end{align*}$ increases by 10% from some base value. Use calculus to determine the approximate percentage change in $\displaystyle \begin{align*} c \end{align*}$, according to the ideal fluid model.

If we remember that the derivative is defined by $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\Delta\,x \to 0} \frac{y\left( x + \Delta\,x \right) - y\left( x \right)}{\Delta \, x} \end{align*}$ then that means that as long as $\displaystyle \begin{align*} \Delta \,x \end{align*}$ is small, then $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} \approx \frac{\Delta \,y}{\Delta\,x} \end{align*}$.

Thus we can say $\displaystyle \begin{align*} \frac{\mathrm{d}c}{\mathrm{d}T} \approx \frac{\Delta\,c}{\Delta\,T} \end{align*}$ and so $\displaystyle \begin{align*} \Delta\,c \approx \frac{\mathrm{d}c}{\mathrm{d}T}\,\Delta\,T \end{align*}$.

Now from $\displaystyle \begin{align*} c = \sqrt{\gamma\,R\,T} \end{align*}$ we have $\displaystyle \begin{align*} \frac{\mathrm{d}c}{\mathrm{d}T} = \frac{\sqrt{\gamma\,R}}{2\,\sqrt{T}} \end{align*}$, and so with a 10\% increase in T, that means $\displaystyle \begin{align*} \Delta\,T = \frac{T}{10} \end{align*}$, thus

$\displaystyle \begin{align*} \Delta\,c &\approx \frac{\sqrt{\gamma\,R}}{2\,\sqrt{T}}\cdot \frac{T}{10} \\ &= \frac{\sqrt{\gamma\,R\,T}}{20} \\ &= \frac{c}{20} \end{align*}$

So that means that the change in c is $\displaystyle \begin{align*} \frac{1}{20} \end{align*}$ of the original c, so a 5% increase.
 
Mathematics news on Phys.org

Similar threads

Replies
4
Views
11K
Replies
2
Views
2K
Replies
2
Views
10K
Replies
1
Views
10K
Replies
4
Views
11K