MHB Berk's question via email about approximating change

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Change Email
Click For Summary
The speed of sound in an ideal fluid is expressed as c = √(γRT), where T is the temperature in Kelvin. A 10% increase in temperature leads to an approximate change in speed, calculated using calculus. The derivative of c with respect to T is found to be d(c)/d(T) = √(γR)/(2√T). With a 10% increase in T, the resulting change in c is approximately c/20, indicating a 5% increase in the speed of sound. This analysis confirms the relationship between temperature changes and sound speed in ideal fluids.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
The speed of sound $\displaystyle \begin{align*} c \end{align*}$ in an ideal fluid is related to the temperature $\displaystyle \begin{align*} T \end{align*}$ (measured in $\displaystyle \begin{align*} ^{\circ} K \end{align*}$) by

$\displaystyle \begin{align*} c = \sqrt{\gamma \, R \, T} \end{align*}$

where $\displaystyle \begin{align*} \gamma \end{align*}$ and $\displaystyle \begin{align*} R \end{align*}$ are constants.

Suppose that $\displaystyle \begin{align*} T \end{align*}$ increases by 10% from some base value. Use calculus to determine the approximate percentage change in $\displaystyle \begin{align*} c \end{align*}$, according to the ideal fluid model.

If we remember that the derivative is defined by $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\Delta\,x \to 0} \frac{y\left( x + \Delta\,x \right) - y\left( x \right)}{\Delta \, x} \end{align*}$ then that means that as long as $\displaystyle \begin{align*} \Delta \,x \end{align*}$ is small, then $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} \approx \frac{\Delta \,y}{\Delta\,x} \end{align*}$.

Thus we can say $\displaystyle \begin{align*} \frac{\mathrm{d}c}{\mathrm{d}T} \approx \frac{\Delta\,c}{\Delta\,T} \end{align*}$ and so $\displaystyle \begin{align*} \Delta\,c \approx \frac{\mathrm{d}c}{\mathrm{d}T}\,\Delta\,T \end{align*}$.

Now from $\displaystyle \begin{align*} c = \sqrt{\gamma\,R\,T} \end{align*}$ we have $\displaystyle \begin{align*} \frac{\mathrm{d}c}{\mathrm{d}T} = \frac{\sqrt{\gamma\,R}}{2\,\sqrt{T}} \end{align*}$, and so with a 10\% increase in T, that means $\displaystyle \begin{align*} \Delta\,T = \frac{T}{10} \end{align*}$, thus

$\displaystyle \begin{align*} \Delta\,c &\approx \frac{\sqrt{\gamma\,R}}{2\,\sqrt{T}}\cdot \frac{T}{10} \\ &= \frac{\sqrt{\gamma\,R\,T}}{20} \\ &= \frac{c}{20} \end{align*}$

So that means that the change in c is $\displaystyle \begin{align*} \frac{1}{20} \end{align*}$ of the original c, so a 5% increase.
 
Mathematics news on Phys.org
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K