This is the equation given for the Y.(adsbygoogle = window.adsbygoogle || []).push({});

[tex]Y_{p}=\frac{J_{p}(x)cos(p\pi)-P_{-p}(x)}{sin(p\pi)}[/tex]

In many books, if p is an integer n, they just said [tex]Y_{n}=lim(p\rightarrow n) Y_{p}[/tex]

[tex]J_{p}(x)=\sum^{k=0}_{\infty}\frac{(-1)^{k}}{k!\Gamma(k+p+1)}(\frac{x}{2})^{2k+p}[/tex] which give

[tex]J_{n}(x)=\sum^{k=0}_{\infty}\frac{(-1)^{k}}{k!\Gamma(k+n+1)}(\frac{x}{2})^{2k+n}=\sum^{k=0}_{\infty}\frac{(-1)^{k}}{k!(k+n)!}(\frac{x}{2})^{2k+n}[/tex]

For p=integer n, [tex]J_{-n}(x)=(-1)^{n}J_{n}(x) \Rightarrow J_{-n}(x)=J_{n}(x),n=0,2,4....[/tex]

and [tex]J_{-n}(x)=-J_{n}(x), n=1,3,5....[/tex]

No books that I have gave the answer for Y when p is an integer. This is what I am doing so far and I cannot get the right answer:

[tex]\stackrel{lim}{p \rightarrow n}[/tex] [tex] Y_{p}=\frac{J_{p}(x)cos(p\pi)-P_{-p}(x)}{sin(p\pi)}=J_{n}(x)\frac{cos(p\pi)-1}{sin(p\pi)}, n=0,2,4,6...[/tex]

[tex]=J_{n}(x)\frac{cos(p\pi)+1}{sin(p\pi)}, n=1,3,5.....[/tex]

So I can evaluate the lim by L'Hopital that [tex]\frac{f(x)}{g(x)}=\frac{f'(x)}{g'(x)}[/tex]

[tex]\frac{cos(p\pi)-1}{sin(p\pi)}=\frac{[cos(p\pi)-1]'}{[sin(p\pi)]'}=\frac{-\pi sin(p\pi)}{\pi cos(p\pi)}[/tex]

If we take p to an integer, the whole thing become zero!!! I can't get [tex]Y_{n}[/tex]

also what is [tex]\stackrel{lim}{x\rightarrow 0} x^{0}?[/tex]

Thanks for your time

Alan

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Bessel's equation of the second kind with integer order.

**Physics Forums | Science Articles, Homework Help, Discussion**