Bilinear Form Non-Degenerate on a Subspace.

Click For Summary

Discussion Overview

The discussion revolves around proving a result related to symmetric bilinear forms on finite-dimensional vector spaces, specifically addressing the non-degeneracy of such forms on a subspace and the implications for the structure of the vector space. The scope includes theoretical aspects of linear algebra and bilinear forms.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant attempts to prove that if a symmetric bilinear form is non-degenerate on a subspace, then the vector space can be expressed as a direct sum of the subspace and its orthogonal complement.
  • Another participant suggests an alternative approach using matrix representations of the bilinear form, arguing that the dimensions of the subspace and its orthogonal complement must sum to the dimension of the entire space.
  • Concerns are raised about assuming the rank of the matrix associated with the bilinear form is maximal, noting that the non-degeneracy condition only applies to the subspace.
  • Clarifications are made regarding the notation used in the matrix representations, specifically what the matrix \( M \) denotes in the context of the problem.
  • One participant expresses that the problem initially posed has been resolved through the discussion, but questions remain about the surjectivity of the linear map defined in the original post.
  • Another participant asserts that the linear map is injective and that the dimensions of the relevant spaces are equal, thus concluding that the map is surjective.

Areas of Agreement / Disagreement

Participants express differing views on the assumptions regarding the rank of the matrix associated with the bilinear form and the implications for the proof. While some agree on the structure of the vector space, the discussion remains unresolved regarding the surjectivity of the defined linear map.

Contextual Notes

Limitations include the dependence on the definitions of non-degeneracy and orthogonal complements, as well as the unresolved status of certain mathematical steps related to the surjectivity of the linear map.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
I am trying to prove the following standard result:Let $V$ be a finite dimensional vector space over a field $F$ and $f:V\times V\to F$ be a symmetric bilinear form on $V$. Let $W$ be a subspace of $V$ such that $f$ is non-degenerate on $W$.
Then
$$V=W\oplus W^\perp$$(Here $W^\perp=\{v\in V:f(w,v)=0\text{ for all } w\in W\}$).Here is what I tried:The bilinear form gives us a map $L_f:V\to V^*$ defined as
$$(L_fu)v=f(u,v),\quad\forall u,v\in V$$
Let $W^0$ denote the annihilator of $W$.
We show that
$$v\in W^\perp \text{ if and only if } L_fv\in W^0$$Let $v\in W^\perp$.
Then $(L_fv)w=f(v,w)=0$ for all $w\in W$. Therefore $L_fv\in W^0$.
Now say $L_fv\in W^0$ for some $v\in V$.
Then $(L_fv)w=0$ for all $w\in W$, giving $f(v,w)=0$ for all $w\in W$.
Therefore $v\in W^\perp$.Also, it is clear that $W\cap W^\perp=0$.Since $\dim W^0=\dim V-\dim W$, we would be done if we could show that $\dim W^\perp \geq \dim W^0$.From the observation done above, it is natural to consider the map $T:W^\perp\to W^0$ defined as $Tv=L_fv$ for all $v\in W^\perp$.
We just need to show that $T$ is surjective.
But here I am stuck.Can somebody help.Thanks.
 
Physics news on Phys.org
We need not to use the concept of dual space. As $V$ is finite dimensional, if $B_W=\{e_1,\ldots,e_r\}$ is a basis of $W$ and $B=\{e_1,\ldots,e_r,\ldots,e_n\}$ a basis of $V$ then, $f(x,y)=X^TAY$ with $A=[a_{ij}]$ symmetric, $\text{rank}(A)=n$ and $X,$ $Y$ coordinates of $x,$ $y$ with respect to $B.$ Then, $$x\in W^{\perp}\Leftrightarrow \left \{ \begin{matrix} f(x.e_1)=0\\\ldots\\f(x.e_r)=0\end{matrix}\right.\Leftrightarrow \left \{ \begin{matrix} a_{11}x _1+\ldots +a_{n1}x_n=0\\\ldots\\a_{1r}x_1+\ldots +a_{nr}x_n=0\end{matrix}\right.\Leftrightarrow MX=0.$$ But $\text{rank}(M)=r$ because $A$ has maximum rank so, $\dim W^{\perp}=n-r.$ This implies $\dim W+\dim W^{\perp}=\dim V.$ As $W\cap W^{\perp}=\{0\},$ we conclude $V=W\oplus W^{\perp}.$
 
Fernando Revilla said:
We need not to use the concept of dual space. As $V$ is finite dimensional, if $B_W=\{e_1,\ldots,e_r\}$ is a basis of $W$ and $B=\{e_1,\ldots,e_r,\ldots,e_n\}$ a basis of $V$ then, $f(x,y)=X^TAY$ with $A=[a_{ij}]$ symmetric, $\text{rank}(A)=n$ and $X,$ $Y$ coordinates of $x,$ $y$ with respect to $B.$ Then, $$x\in W^{\perp}\Leftrightarrow \left \{ \begin{matrix} f(x.e_1)=0\\\ldots\\f(x.e_r)=0\end{matrix}\right.\Leftrightarrow \left \{ \begin{matrix} a_{11}x _1+\ldots +a_{n1}x_n=0\\\ldots\\a_{1r}x_1+\ldots +a_{nr}x_n=0\end{matrix}\right.\Leftrightarrow MX=0.$$ But $\text{rank}(M)=r$ because $A$ has maximum rank so, $\dim W^{\perp}=n-r.$ This implies $\dim W+\dim W^{\perp}=\dim V.$ As $W\cap W^{\perp}=\{0\},$ we conclude $V=W\oplus W^{\perp}.$

Here we cannot assume that $\text{rank}(A)=n$ because $f$ is not necessarily degenerate on the whole of $V$. The hypothesis merely demands the non-degeneracy of $f$ on $W$.

Also, what does $M$ denote in your answer?
 
caffeinemachine said:
Here we cannot assume that $\text{rank}(A)=n$ because $f$ is not necessarily degenerate on the whole of $V$.

Sorry, I didn't notice it, but it does not matter, if $f_{W}:W\times W\to K$ is not degenerate then, the matrix of $f_W$ with respect to $B_W=\{e_1,\ldots,e_r\}$ is $$A_W=\begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1r}\\ a_{21} &a_{22} & \ldots & a_{2r} \\ \vdots&&&\vdots \\ a_{r1} & a_{r2} &\ldots & a_{rr}\end{bmatrix}\text{ with }\det( A_W)\neq 0.\qquad (*)$$

Also, what does $M$ denote in your answer?

Denotes the matrix of the cooresponding system, that is $M=\begin{bmatrix} a_{11} & a_{21} & \ldots & a_{n1}\\ \vdots&&&\vdots \\ a_{1r} & a_{2r} &\ldots & a_{nr}\end{bmatrix},$ and $\text{rank}(M)=r$ by $(*).$
 
Fernando Revilla said:
Sorry, I didn't notice it, but it does not matter, if $f_{W}:W\times W\to K$ is not degenerate then, the matrix of $f_W$ with respect to $B_W=\{e_1,\ldots,e_r\}$ is $$A_W=\begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1r}\\ a_{21} &a_{22} & \ldots & a_{2r} \\ \vdots&&&\vdots \\ a_{r1} & a_{r2} &\ldots & a_{rr}\end{bmatrix}\text{ with }\det( A_W)\neq 0.\qquad (*)$$
Denotes the matrix of the cooresponding system, that is $M=\begin{bmatrix} a_{11} & a_{21} & \ldots & a_{n1}\\ \vdots&&&\vdots \\ a_{1r} & a_{2r} &\ldots & a_{nr}\end{bmatrix},$ and $\text{rank}(M)=r$ by $(*).$
This solves the problem I was originally trying to solve. Thanks.

But can you say for sure that $T$, defined in the last paragraph of my first post, is necessarily surjective?
 
caffeinemachine said:
But can you say for sure that $T$, defined in the last paragraph of my first post, is necessarily surjective?

Yes, $T: W^{\perp}\to W^{0}$ is a linear map, injective and $\dim W^{\perp}=\dim W^{0}$ so, $T$ is surjective.
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K