MHB Bilinear Form Non-Degenerate on a Subspace.

Click For Summary
The discussion centers on proving that if a symmetric bilinear form is non-degenerate on a subspace W of a finite-dimensional vector space V, then V can be expressed as the direct sum of W and its orthogonal complement W⊥. The approach involves defining a linear map T from W⊥ to the annihilator W^0 and demonstrating its surjectivity. Key points include establishing that if L_fv is in W^0, then v must belong to W⊥, and confirming that the dimensions of W⊥ and W^0 are equal. The conclusion is that V = W ⊕ W⊥, solidifying the relationship between the subspace and its orthogonal complement.
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
I am trying to prove the following standard result:Let $V$ be a finite dimensional vector space over a field $F$ and $f:V\times V\to F$ be a symmetric bilinear form on $V$. Let $W$ be a subspace of $V$ such that $f$ is non-degenerate on $W$.
Then
$$V=W\oplus W^\perp$$(Here $W^\perp=\{v\in V:f(w,v)=0\text{ for all } w\in W\}$).Here is what I tried:The bilinear form gives us a map $L_f:V\to V^*$ defined as
$$(L_fu)v=f(u,v),\quad\forall u,v\in V$$
Let $W^0$ denote the annihilator of $W$.
We show that
$$v\in W^\perp \text{ if and only if } L_fv\in W^0$$Let $v\in W^\perp$.
Then $(L_fv)w=f(v,w)=0$ for all $w\in W$. Therefore $L_fv\in W^0$.
Now say $L_fv\in W^0$ for some $v\in V$.
Then $(L_fv)w=0$ for all $w\in W$, giving $f(v,w)=0$ for all $w\in W$.
Therefore $v\in W^\perp$.Also, it is clear that $W\cap W^\perp=0$.Since $\dim W^0=\dim V-\dim W$, we would be done if we could show that $\dim W^\perp \geq \dim W^0$.From the observation done above, it is natural to consider the map $T:W^\perp\to W^0$ defined as $Tv=L_fv$ for all $v\in W^\perp$.
We just need to show that $T$ is surjective.
But here I am stuck.Can somebody help.Thanks.
 
Physics news on Phys.org
We need not to use the concept of dual space. As $V$ is finite dimensional, if $B_W=\{e_1,\ldots,e_r\}$ is a basis of $W$ and $B=\{e_1,\ldots,e_r,\ldots,e_n\}$ a basis of $V$ then, $f(x,y)=X^TAY$ with $A=[a_{ij}]$ symmetric, $\text{rank}(A)=n$ and $X,$ $Y$ coordinates of $x,$ $y$ with respect to $B.$ Then, $$x\in W^{\perp}\Leftrightarrow \left \{ \begin{matrix} f(x.e_1)=0\\\ldots\\f(x.e_r)=0\end{matrix}\right.\Leftrightarrow \left \{ \begin{matrix} a_{11}x _1+\ldots +a_{n1}x_n=0\\\ldots\\a_{1r}x_1+\ldots +a_{nr}x_n=0\end{matrix}\right.\Leftrightarrow MX=0.$$ But $\text{rank}(M)=r$ because $A$ has maximum rank so, $\dim W^{\perp}=n-r.$ This implies $\dim W+\dim W^{\perp}=\dim V.$ As $W\cap W^{\perp}=\{0\},$ we conclude $V=W\oplus W^{\perp}.$
 
Fernando Revilla said:
We need not to use the concept of dual space. As $V$ is finite dimensional, if $B_W=\{e_1,\ldots,e_r\}$ is a basis of $W$ and $B=\{e_1,\ldots,e_r,\ldots,e_n\}$ a basis of $V$ then, $f(x,y)=X^TAY$ with $A=[a_{ij}]$ symmetric, $\text{rank}(A)=n$ and $X,$ $Y$ coordinates of $x,$ $y$ with respect to $B.$ Then, $$x\in W^{\perp}\Leftrightarrow \left \{ \begin{matrix} f(x.e_1)=0\\\ldots\\f(x.e_r)=0\end{matrix}\right.\Leftrightarrow \left \{ \begin{matrix} a_{11}x _1+\ldots +a_{n1}x_n=0\\\ldots\\a_{1r}x_1+\ldots +a_{nr}x_n=0\end{matrix}\right.\Leftrightarrow MX=0.$$ But $\text{rank}(M)=r$ because $A$ has maximum rank so, $\dim W^{\perp}=n-r.$ This implies $\dim W+\dim W^{\perp}=\dim V.$ As $W\cap W^{\perp}=\{0\},$ we conclude $V=W\oplus W^{\perp}.$

Here we cannot assume that $\text{rank}(A)=n$ because $f$ is not necessarily degenerate on the whole of $V$. The hypothesis merely demands the non-degeneracy of $f$ on $W$.

Also, what does $M$ denote in your answer?
 
caffeinemachine said:
Here we cannot assume that $\text{rank}(A)=n$ because $f$ is not necessarily degenerate on the whole of $V$.

Sorry, I didn't notice it, but it does not matter, if $f_{W}:W\times W\to K$ is not degenerate then, the matrix of $f_W$ with respect to $B_W=\{e_1,\ldots,e_r\}$ is $$A_W=\begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1r}\\ a_{21} &a_{22} & \ldots & a_{2r} \\ \vdots&&&\vdots \\ a_{r1} & a_{r2} &\ldots & a_{rr}\end{bmatrix}\text{ with }\det( A_W)\neq 0.\qquad (*)$$

Also, what does $M$ denote in your answer?

Denotes the matrix of the cooresponding system, that is $M=\begin{bmatrix} a_{11} & a_{21} & \ldots & a_{n1}\\ \vdots&&&\vdots \\ a_{1r} & a_{2r} &\ldots & a_{nr}\end{bmatrix},$ and $\text{rank}(M)=r$ by $(*).$
 
Fernando Revilla said:
Sorry, I didn't notice it, but it does not matter, if $f_{W}:W\times W\to K$ is not degenerate then, the matrix of $f_W$ with respect to $B_W=\{e_1,\ldots,e_r\}$ is $$A_W=\begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1r}\\ a_{21} &a_{22} & \ldots & a_{2r} \\ \vdots&&&\vdots \\ a_{r1} & a_{r2} &\ldots & a_{rr}\end{bmatrix}\text{ with }\det( A_W)\neq 0.\qquad (*)$$
Denotes the matrix of the cooresponding system, that is $M=\begin{bmatrix} a_{11} & a_{21} & \ldots & a_{n1}\\ \vdots&&&\vdots \\ a_{1r} & a_{2r} &\ldots & a_{nr}\end{bmatrix},$ and $\text{rank}(M)=r$ by $(*).$
This solves the problem I was originally trying to solve. Thanks.

But can you say for sure that $T$, defined in the last paragraph of my first post, is necessarily surjective?
 
caffeinemachine said:
But can you say for sure that $T$, defined in the last paragraph of my first post, is necessarily surjective?

Yes, $T: W^{\perp}\to W^{0}$ is a linear map, injective and $\dim W^{\perp}=\dim W^{0}$ so, $T$ is surjective.
 
Last edited:
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K