(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A billard ball of radius 'a' is intially spinning about a horizontal axis with angular speed w and with zero forward speed. If mu is the coefficent of sliding friction between the ball and the table, find the distance the ball travels before slipping ceases to occur.

2. Relevant equations

Radius of gyration= 2/5*a^2, through the center of mass.

v=r*w

I*w=F(sub p)*r, where I is the moment of inertia, and F(sub p) is the fictional force parallel to the plane.

3. The attempt at a solution

So far, I have been able to determine that the intial velocity is equal to a*w(sub intial). But this doesn't do me much good.

I am more or less having a hard time trying to set up a force equation to solve.

I was thinking that the equation of motion would look something like this

m*a= (I*w)/a - f, where f (lower case) is the force due to friction).

But I don't think this is right.

Any ideas?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Billard Ball Rolling problem (tricky)

**Physics Forums | Science Articles, Homework Help, Discussion**