MHB Bivariate discrete random variable

AI Thread Summary
The discussion revolves around calculating the correlation coefficient between the number of heads (X) obtained from drawing a biased coin N times, where N follows a Poisson distribution with an expected value of 1. The independence of the events allows for the use of joint distributions to derive necessary statistics. The variance of N is straightforward, but the challenge lies in determining the covariance and variances for X. Key calculations involve summing over possible values of X and N to find the means and variances, ultimately leading to the correlation formula. The discussion emphasizes the importance of understanding the joint distribution and the independence of variables in this context.
Yankel
Messages
390
Reaction score
0
Hello

I am trying to solve this problem:

A coin is given with probability 1/3 for head (H) and 2/3 for tail (T).
The coin is being drawn N times, where N is a Poisson random variable with E(N)=1. The drawing of the coin and N are independent. Let X be the number of heads (H) in the N draws. What is the correlation coefficient of X and N ?

So I started this by creating a table as if it was a finite problem, just to see how it behaves, but it didn't lead me too far. Since there is independence, every event P(X=x , N=n) is equal to P(X=x|N=n)*P(N=n). So this is like a tree diagram sample space. In order to find the correlation, I need the covariance and the variances. The variance of N, it's easy, 1. How do I find the rest of the stuff ?

Thanks !
 
Physics news on Phys.org
Yankel said:
Hello

I am trying to solve this problem:

A coin is given with probability 1/3 for head (H) and 2/3 for tail (T).
The coin is being drawn N times, where N is a Poisson random variable with E(N)=1. The drawing of the coin and N are independent. Let X be the number of heads (H) in the N draws. What is the correlation coefficient of X and N ?

So I started this by creating a table as if it was a finite problem, just to see how it behaves, but it didn't lead me too far. Since there is independence, every event P(X=x , N=n) is equal to P(X=x|N=n)*P(N=n). So this is like a tree diagram sample space. In order to find the correlation, I need the covariance and the variances. The variance of N, it's easy, 1. How do I find the rest of the stuff ?

Thanks !

You have \(\bar{N}\), \(\sigma_N\) and the joint distribution, so:

$$ \bar{X} = \sum_{n=0..\infty, x=0,..n} x f_{X,N}(x,n)=\sum_{n=0..\infty} \frac{n}{3}f_N(n)=\frac{1}{3}\bar{N}$$

[math]\sigma^2_X= \sum_{n=0..\infty, x=0,..n} (x-\bar{X})^2 f_{X,N}(x,n)=\sum_{n=0..\infty}\frac{2n}{3}f_N(n)=\frac{2}{3}\bar{N}[/math]

$${\rm{Cov}}(X,N)= \sum_{n=0..\infty, x=0,..n} (x-\bar{X})(n-\bar{N}) f_{X,N}(x,n)=\sum_{n=0..\infty}\frac{(n-\bar{N})^2}{3}f_N(n)=\frac{\sigma^2_N}{3}$$

so:

$$\rho_{X,N}=\frac{{\rm{Cov}}(X,N)}{\sigma_X \sigma_N}=\ ...$$

The key idea here is that for the double summation you can always choose to do that over \(x\) first.

.
 
Last edited:
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...

Similar threads

Replies
2
Views
2K
Replies
30
Views
4K
Replies
5
Views
2K
Replies
5
Views
1K
Replies
6
Views
2K
Replies
1
Views
1K
Back
Top