1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Black holes, white dwarfs and neutron star - Shapiro, Teukolsky

  1. Nov 17, 2014 #1
    1. The problem statement, all variables and given/known data
    Exercise 2.6 (page 28)
    Consider completely ionized matter consisting of hydrogen, helium, and heavier atomic species i>2. Let X and Y denote the fractions by mass of hydrogen and helium, respectively. Show that
    [itex]\mu_e=\frac{2}{1+X}.[/itex]
    Approximate [itex]m_i=A_i m_u [/itex] for all i, and take [itex]Z_i/A_i=1/2[/itex] for i>1.

    2. Relevant equations
    [itex]\mu_e=\frac{m_B}{m_uY_e} \\
    m_B=\frac{\sum{n_i m_i}}{\sum{n_i A_i}}[/itex] baryon rest mass, where [itex]m_u [/itex] is mass of nucleon, [itex]Y_e=Z/A [/itex] is number of electrons per baryon.


    3. The attempt at a solution
    I didn't find definition of X and Y but I suppose [itex]X=m_H/m_{tot} = [/itex]. Im quit confused so I cant realize how proceed.
     
  2. jcsd
  3. Nov 17, 2014 #2

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    It is defined in the problem statement, and you found the right formula.
    This is for a single element. For the total mixture, you'll need a weighted average.

    Here is an easier version of the problem: if you have 200 hydrogen nuclei and 100 helium nuclei, how many electrons per baryon do you have, and what is the mass fraction of hydrogen?
    What about 100 and 100 nuclei? Or arbitrary numbers?
     
  4. Nov 17, 2014 #3
    For Hydrogen: [tex]M_H=n_H m_u[/tex], for Helium: [tex]M_{He}=n_{He}A_{He}m_{He}[/tex] Than
    [tex]X=\frac{n_H m_u}{n_H m_u+n_{He}A_{He}m_{u}}=\frac{n_H}{n_H+n_{He}A_{He}}[/tex] and [tex]Y=\frac{n_{He} m_u}{n_H m_u+n_{He}A_{He}m_{u}}=\frac{n_{He}}{n_H+n_{He}A_{He}}[/tex].
    So than I mean amount eletroncs per baryon is [tex]Y_e=\frac{n_{H}+Z_{He}n_{He}}{n_H +n_{He}A_{He}}=\frac{n_{H}+n_{He}A_{He}/2}{n_H+n_{He}A_{He}}[/tex]. Ok?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Black holes, white dwarfs and neutron star - Shapiro, Teukolsky
  1. Neutron stars (Replies: 1)

Loading...