MHB Bob's question at Yahoo Answers regarding mimimizing a solid of revolution

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Revolution Solid
Click For Summary
The discussion focuses on finding the minimum volume of the solid of revolution formed by rotating the function f(x) = p/x^p around the x-axis over the interval [1, infinity). Using the disk method, the volume is expressed as V = πp²/(2p-1) for p > 1/2. Differentiating V with respect to p reveals a critical point at p = 1, where the volume is minimized. The analysis shows that for 1/2 < p < 1, the volume decreases, while for p > 1, it increases, confirming that the minimum occurs at p = 1. Therefore, the minimum volume of the solid is achieved when p equals 1.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Solid of Revolution Calculus 2 question.?

For a positive real number p, define f(x)=p/x^(p). Find the minimum value of the volume of the solid created by rotating this function around the x-axis over the interval [1,infinity).

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello bob,

First, let's write the given function as:

$$f(x)=px^{-p}$$

Now, using the disk method, we find that the volume of an arbitrary disk is:

$$dV=\pi r^2\,dx$$

where:

$$r=f(x)=px^{-p}$$

And so we have:

$$dV=\pi p^2 x^{-2p}\,dx$$

Summing us all of the disks, we may state:

$$V=\pi p^2\int_1^{\infty}x^{-2p}\,dx$$

This is an improper integral with the unbounded upper limit, so we may write:

$$V=\pi p^2\lim_{t\to\infty}\left(\int_1^{\infty}x^{-2p}\,dx \right)$$

Applying the FTOC, we have:

$$V=\pi p^2\lim_{t\to\infty}\left(\left[\frac{x^{1-2p}}{1-2p} \right]_1^{t} \right)$$

$$V=\frac{\pi p^2}{1-2p}\lim_{t\to\infty}\left(\frac{1}{t^{2p-1}}-1 \right)$$

For $$\frac{1}{2}<p$$ we have:

$$V(p)=\frac{\pi p^2}{2p-1}$$

To determine the critical value(s), we need to differentiate with respect to $p$ and equate the result to zero. Using the quotient rule, we find:

$$V'(p)=\frac{(2p-1)(2\pi p)-\left(\pi p^2 \right)(2)}{(2p-1)^2}=\frac{2\pi p(p-1)}{(2p-1)^2}$$

For $$\frac{1}{2}<p$$ we have:

$$p=1$$

If we observe that for $$\frac{1}{2}<p<1$$ we have $V'(p)<0$ and for $1<p$ we have $V'(p)>0$, we may therefore conclude that this critical value is at a minimum.

Thus, we may conclude that the described solid of revolution is minimized when $p=1$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K