Boundedness of Oscillatory Integrals

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on the boundedness of oscillatory integrals involving smooth functions ##\phi## and ##h##, specifically under the conditions that the matrix of second derivatives of ##\phi## is invertible on the support of ##h##. It establishes that for any function ##f## in the space ##L^p(\mathbb{R}^d)##, where ##1 \le p \le 2##, there exists a constant ##C_p > 0## such that the integral $$\left\|\int_{\mathbb{R}^d} e^{i\lambda\phi(x,y)}h(x,y)f(y)\, dy\right\|_{L_x^{q}(\mathbb{R}^d)}$$ is bounded by ##C\lambda^{-d/q}\|f\|_{L^p(\mathbb{R}^d)}##, with ##q## being the conjugate exponent of ##p##. This result is a consequence of Hormander's generalization of the Hausdorff-Young inequality.

PREREQUISITES
  • Understanding of oscillatory integrals
  • Familiarity with Sobolev spaces, specifically ##L^p## spaces
  • Knowledge of the Hausdorff-Young inequality
  • Basic concepts of differential calculus in multiple dimensions
NEXT STEPS
  • Study the properties of oscillatory integrals in detail
  • Explore Hormander's generalization of the Hausdorff-Young inequality
  • Investigate the implications of matrix invertibility in the context of oscillatory integrals
  • Learn about the applications of ##L^p## spaces in functional analysis
USEFUL FOR

Mathematicians, particularly those specializing in harmonic analysis, functional analysis, and partial differential equations, will benefit from this discussion. It is also relevant for researchers exploring the boundedness of oscillatory integrals in various applications.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##\phi \in C^\infty(\mathbb{R}^d \times \mathbb{R}^d)## and ##h\in C_0^\infty(\mathbb{R}^d \times \mathbb{R}^d)## such that matrix ##(\frac{\partial^2 \phi}{\partial x_j \, \partial y_k}(x,y))## is invertible on the support of ##h##. Show that for ##1 \le p \le 2##, there is a constant ##C = C_p > 0## such that for every ##\lambda > 0## and ##f\in L^p(\mathbb{R}^d)##, $$\left\|\int_{\mathbb{R}^d} e^{i\lambda\phi(x,y)}h(x,y)f(y)\, dy\right\|_{L_x^{q}(\mathbb{R}^d)} \le C\lambda^{-d/q}\|f\|_{L^p(\mathbb{R}^d)}$$ where ##q## is the conjugate exponent of ##p##.
 
  • Like
Likes   Reactions: wrobel and topsquark
Physics news on Phys.org
Hormander's generalization of the Hausdorff-Young inequality
a tough task :)
 
Last edited:
Let $$(T_\lambda f)(x) = \int_{\mathbb{R}^d} e^{i\lambda \phi(x,y)}\, h(x,y)f(y)\, dy$$ If ##f\in L^1(\mathbb{R}^d)##, the triangle inequality gives an immediate estimate ##\|T_\lambda f\|_{L^\infty(\mathbb{R}^d)} \lesssim\|f\|_{L^1(\mathbb{R}^d)}##. Now suppose ##f\in L^2(\mathbb{R}^d)##. By Fubini's theorem we can write $$\|T_\lambda f\|_{L^2(\mathbb{R}^d)}^2 = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} e^{i\lambda[\phi(x,y) - \phi(x,z)]} h(x,y)\overline{h(x,z)}\, dx\right)\, f(y)\overline{f(z)}\, dy\, dz$$ For convenience, let the inner integral in paratheses be ##K(y,z;\lambda)##. Since the matrix ##D_xD_y\phi## is invertible on the support of ##h##, using a partition of unity if necessary we may assume ##D_x[\phi(x,y) - \phi(x,z)] \ge M|y - z|## on the supprt of ##h## for some ##M > 0##. Then by method of stationary phase, ##|K(y,z;\lambda)| \lesssim (1 + \lambda|y - z|)^{-N}## for every positive integer ##N##. If ##N > n##, ##\|(1 + \lambda |y|)^{-N}\|_{L^1(\mathbb{R}^d)} \simeq \lambda^{n-N}##; the Young and Schwarz inequalities produce estimates $$\|T_\lambda f\|_{L^2(\mathbb{R}^d)}^2 \lesssim \|(1 + \lambda|y|)^{-N}\|_{L^1(\mathbb{R}^d)} \|f\|_{L^2(\mathbb{R}^d)}^2 \lesssim \lambda^{n-N} \|f\|_{L^2(\mathbb{R}^d)}^2$$ Setting ##N = 2n## and taking square roots, we obtain ##\|T_\lambda f\|_{L^2(\mathbb{R}^d)} \lesssim \lambda^{-n/2}\|f\|_{L^2(\mathbb{R}^d)}##. By Riesz interpolation of the linear operator ##T_\lambda## the result follows.
 
  • Like
Likes   Reactions: topsquark

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
454
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K