- #1
- 2,006
- 1,366
Show that if there exists a nonzero, translation-invariant bounded linear operator ##T : L^p(\mathbb{R}^d) \to L^q(\mathbb{R}^d)## where ##1 \le p, q < \infty##, then necessarily ##q \ge p##.
If ##y\in \mathbb{R}^d## and ##(\tau_y f)(x) := f(x + y)## for all ##x\in \mathbb{R}^d##, we require ##T\circ \tau_y = \tau_y\circ T## for all ##y\in \mathbb{R}^d##.Does translation invariant mean that ##T(f(x+c))=T(f(x))## for any constant c?
If ##y\in \mathbb{R}^d## and ##(\tau_y f)(x) := f(x + y)## for all ##x\in \mathbb{R}^d##, we require ##T\circ \tau_y = \tau_y\circ T## for all ##y\in \mathbb{R}^d##.