Undergrad Bounding modulus of complex logarithm times complex power function

Click For Summary
The discussion centers on bounding the modulus of the expression \((\log(z))^j z^\lambda\) for complex \(z\), where \(j\) is a non-negative integer and \(\lambda\) is a complex number. It is established that the modulus can be bounded above by \(c|z|^l\) for some integer \(l\) and constant \(c\), particularly when considering the branch \(0 \leq \mathrm{arg}(z) < 2\pi\). The participants explore various inequalities and limits, particularly near the origin, concluding that \(|\log(z)|\) can be bounded by \(c|z|^n\) for small \(z\). Ultimately, the analysis suggests that the expression can be simplified further by focusing on the real and imaginary parts of \(\lambda\) and their impact on the bounding conditions. The discussion highlights the complexity of the logarithm's behavior and the need for careful handling of its discontinuities.
psie
Messages
315
Reaction score
40
TL;DR
In my textbook (Ordinary Differential Equations by Andersson and Böiers), they claim that ##|(\log(z))^jz^\lambda|## can be bounded above by ##c|z|^l## for some integer ##l## and constant ##c##. I have a hard time confirming this.
It is claimed that the modulus of ##(\log(z))^jz^\lambda##, where ##j## is a positive integer (or ##0##) and ##\lambda## a complex number, can be bounded above by ##c|z|^l## for some integer ##l## and constant ##c##. Assume we are on the branch ##0\leq \mathrm{arg}(z)<2\pi## (yes, ##0## included; hence a discontinuous logarithm). Anyway, here's what I've tried so far.

Let ##\lambda_1## and ##\lambda_2## be the real and imaginary part of ##\lambda## respectively. By definition, ##\log(z)=\ln(|z|)+i\mathrm{arg}(z)##. Then $$|(\log(z))^j|=|\log(z)|^j\leq\left(\sqrt{\ln(|z|)^2+4\pi^2}\right)^j,$$ and $$|z^\lambda|=|e^{\lambda\log(z)}|=e^{\lambda_1\ln(|z|)}e^{-\lambda_2\arg(z)}=|z|^{\lambda_1}e^{-\lambda_2\arg(z)}.$$

Then someone has pointed to the limit ##\lim _{x\to \infty }\frac{(\ln x)^r}{x^k}=0## for ##r,k>0##, yet I don't see how we can write my simplification as this limit, if I have understood things right. Maybe there's another approach. Grateful for any help.
 
Last edited:
Physics news on Phys.org
Are you only interested in large values of z or is this supposed to be true near the origin as well?
 
Office_Shredder said:
Are you only interested in large values of z or is this supposed to be true near the origin as well?
I forgot to mention, it's supposed to be true near the origin, so for ##|z|>0## small. I have found a solution elsewhere and I think there's no harm in posting it here. Write ##\lambda=x+iy##. So

\begin{align} |(\log z)^j| &=|\log|z|+i\arg z|^j \nonumber \\ &\le\big(\big|\log|z|\big|+2\pi\big)^j \nonumber \\ &\le\left(\frac{1}{|z|}+2\pi\right)^j \nonumber \\ &\le\left(\frac{2}{|z|}\right)^j \nonumber \end{align}

The first inequality is the triangle inequality, second follows from ##ye^{-y}<1## when ##y=-\log|z|>0## is large and the third one is ##2\pi<\frac{1}{|z|}## for ##|z|## small. Moreover,

\begin{align} |z^\lambda| &=|\exp(\lambda\log z)| \nonumber \\ &=\exp\big(\operatorname{Re}(\lambda\log z)\big) \nonumber \\ &=\exp\big(x\log|z|-y\arg z\big) \nonumber \\ &=|z|^xe^{-y\arg z} \nonumber \\ &\le|z|^{\lfloor x\rfloor}e^{-y\arg z} \nonumber \\ &\le|z|^{\lfloor x\rfloor}e^{\max\{0,-2\pi y\}}. \nonumber \end{align}

Thus, ##|(\log z)^jz^\lambda|\le 2^je^{\max\{0,-2\pi y\}}|z|^{\lfloor x\rfloor-j}##.
 
I guess we can simplify this. If ##|\log(z)| \leq c|z|^n## then ##|\log(z)^j z^\lambda| \leq c^j |z|^{(nj+\lambda)}##. So it suffices to just consider ##\log(z)##.

Ignoring the discontinuity with the branch cut, we can try to just apply l'hospital's rule.

##\lim_{z\to 0} \log(z)/z^n## (with n negative, so you get an infinity over infinity) Taking one derivative gives ##(1/z)/( (nz^{n-1}) = 1/(nz^n)##. So even with ##n=-1## we get that this limit is zero, and hence ##|\log(z)| \leq |z^{-1}|## for small enough ##z##
 
Office_Shredder said:
I guess we can simplify this. If ##|\log(z)| \leq c|z|^n## then ##|\log(z)^j z^\lambda| \leq c^j |z|^{(nj+\lambda)}##.

A little more work to do, since \lambda is complex. \begin{split}<br /> |z^\lambda| &amp;= |e^{\Re(\lambda \ln z)}| \\<br /> &amp;= |z|^{\Re(\lambda)}e^{-\Im(\lambda)\arg z} \end{split} and having chosen your branch you can remove the dependence on \arg z by maximising -\Im(\lambda) \arg(z).
 
  • Like
Likes Office_Shredder
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K