Bruno's question at Yahoo Answers (Tangent line to an ellipse).

  • Context: MHB 
  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Ellipse Line
Click For Summary
SUMMARY

The discussion focuses on finding the equations of the tangent lines to the ellipse defined by the equation 3x² + y² + 4x - 2y = 3, specifically with a slope of 1. Two tangent lines were derived: y = x - 1 and y = x + 13/3. The process involved substituting the line equation into the ellipse equation and ensuring the discriminant of the resulting quadratic equation equals zero, confirming tangency. An alternative method using implicit differentiation was also presented, leading to the same tangent lines.

PREREQUISITES
  • Understanding of conic sections, specifically ellipses
  • Knowledge of implicit differentiation techniques
  • Familiarity with quadratic equations and discriminants
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of ellipses and their equations in standard form
  • Learn about implicit differentiation and its applications in calculus
  • Explore quadratic equations and the significance of the discriminant
  • Practice finding tangent lines to various conic sections
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and conic sections, as well as anyone interested in the geometric properties of ellipses and their tangents.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

3x^2+y^2+4x-2y=3 Find the equation of the tangent line to that ellipse with slope 1.
I know how to write it in the canonic form but then i don't know what to do.
Answer: x-y-1=0

Here is a link to the question:

Tangent line to a ellipse? - Yahoo! Answers
 
Physics news on Phys.org
Hello Bruno,

The equation of a line with slope $1$ is $r:y=x+b$. If the line is tangent to the ellipse, the intersection must be only one point. Substituting in the ellipse:

$3x^2+(x+b)^2+4x-2(x+b)-3=0$

Equivalently:

$4x^2+(2b+2)x+b^2-2b-3=0$

The discriminat $D=B^2-4AC$ must be $0$:

$D=(2b+2)^2-16(b^2-2b-3)=0$

Simplifying:

$3b^2-10b-13=0\Leftrightarrow b=-1\vee b=13/3$

So, there are two solutions:

$y=x-1,\;y=x+\dfrac{13}{3}$
 
Fernando Revilla said:
Here is the question:
Here is a link to the question:

Tangent line to a ellipse? - Yahoo! Answers

An alternative method:

Your tangent line is $\displaystyle \begin{align*} 3x^2 + y^2 + 4x - 2y = 3 \end{align*}$. Differentiating both sides with respect to x gives

$\displaystyle \begin{align*} \frac{d}{dx} \left( 3x^2 + y^2 + 4x - 2y \right) &= \frac{d}{dx} \left( 3 \right) \\ 6x + 2y\,\frac{dy}{dx} + 4 - 2\,\frac{dy}{dx} &= 0 \\ 6x + 4 &= \left( 2 - 2y \right) \frac{dy}{dx} \\ 3x + 2 &= \left( 1 - y \right) \frac{dy}{dx} \\ \frac{3x + 2}{1 - y} &= \frac{dy}{dx} \end{align*}$

You know that the slope is 1 at that point, so that means

$\displaystyle \begin{align*} \frac{3x + 2}{1 - y} &= 1 \\ 3x + 2 &= 1 - y \\ 3x + 1 &= -y \\ -3x - 1 &= y \end{align*}$

Substituting into the original equation for your ellipse gives

$\displaystyle \begin{align*} 3x^2 + y^2 + 4x - 2y &= 3 \\ 3x^2 + \left( -3x - 1 \right)^2 + 4x - 2 \left( -3x - 1 \right) &= 3 \\ 3x^2 + 9x^2 + 6x + 1 + 4x + 6x + 2 &= 3 \\ 12x^2 + 16x + 3 &= 3 \\ 12x^2 + 16x &= 0 \\ 4x \left( 3x + 4 \right) &= 0 \\ 4x = 0 \textrm{ or } 3x + 4 &= 0 \\ x = 0 \textrm{ or } x &= -\frac{4}{3} \end{align*}$

And since we know $\displaystyle \begin{align*} y = -3x - 1 \end{align*}$, that means the two points on the ellipse which have a tangent line of slope 1 are $\displaystyle \begin{align*} (0, -1) \end{align*}$ and $\displaystyle \begin{align*} \left( -\frac{4}{3} , 3 \right) \end{align*}$.

Each tangent line will be of the form $\displaystyle \begin{align*} y = mx + c \end{align*}$, so in the first tangent line:

$\displaystyle \begin{align*} -1 &= 1(0) + c \\ -1 &= c \end{align*}$

and in the second tangent line:

$\displaystyle \begin{align*} 3 &= 1 \left( -\frac{4}{3} \right) + c \\ 3 &= -\frac{4}{3} + c \\ \frac{13}{3} &= c \end{align*}$So your two tangent lines are $\displaystyle \begin{align*} y = x - 1 \end{align*}$ and $\displaystyle \begin{align*} y = x + \frac{13}{3} \end{align*}$.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
5
Views
2K
Replies
1
Views
6K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
8
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K