MHB Bruno's question at Yahoo Answers (Tangent line to an ellipse).

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Ellipse Line
AI Thread Summary
To find the tangent line to the ellipse defined by the equation 3x^2 + y^2 + 4x - 2y = 3 with a slope of 1, the equation of the line can be expressed as y = x + b. By substituting this into the ellipse equation and ensuring the discriminant is zero, two values for b are derived: -1 and 13/3. This results in two tangent lines: y = x - 1 and y = x + 13/3. The points of tangency on the ellipse are (0, -1) and (-4/3, 3).
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

3x^2+y^2+4x-2y=3 Find the equation of the tangent line to that ellipse with slope 1.
I know how to write it in the canonic form but then i don't know what to do.
Answer: x-y-1=0

Here is a link to the question:

Tangent line to a ellipse? - Yahoo! Answers
 
Mathematics news on Phys.org
Hello Bruno,

The equation of a line with slope $1$ is $r:y=x+b$. If the line is tangent to the ellipse, the intersection must be only one point. Substituting in the ellipse:

$3x^2+(x+b)^2+4x-2(x+b)-3=0$

Equivalently:

$4x^2+(2b+2)x+b^2-2b-3=0$

The discriminat $D=B^2-4AC$ must be $0$:

$D=(2b+2)^2-16(b^2-2b-3)=0$

Simplifying:

$3b^2-10b-13=0\Leftrightarrow b=-1\vee b=13/3$

So, there are two solutions:

$y=x-1,\;y=x+\dfrac{13}{3}$
 
Fernando Revilla said:
Here is the question:
Here is a link to the question:

Tangent line to a ellipse? - Yahoo! Answers

An alternative method:

Your tangent line is $\displaystyle \begin{align*} 3x^2 + y^2 + 4x - 2y = 3 \end{align*}$. Differentiating both sides with respect to x gives

$\displaystyle \begin{align*} \frac{d}{dx} \left( 3x^2 + y^2 + 4x - 2y \right) &= \frac{d}{dx} \left( 3 \right) \\ 6x + 2y\,\frac{dy}{dx} + 4 - 2\,\frac{dy}{dx} &= 0 \\ 6x + 4 &= \left( 2 - 2y \right) \frac{dy}{dx} \\ 3x + 2 &= \left( 1 - y \right) \frac{dy}{dx} \\ \frac{3x + 2}{1 - y} &= \frac{dy}{dx} \end{align*}$

You know that the slope is 1 at that point, so that means

$\displaystyle \begin{align*} \frac{3x + 2}{1 - y} &= 1 \\ 3x + 2 &= 1 - y \\ 3x + 1 &= -y \\ -3x - 1 &= y \end{align*}$

Substituting into the original equation for your ellipse gives

$\displaystyle \begin{align*} 3x^2 + y^2 + 4x - 2y &= 3 \\ 3x^2 + \left( -3x - 1 \right)^2 + 4x - 2 \left( -3x - 1 \right) &= 3 \\ 3x^2 + 9x^2 + 6x + 1 + 4x + 6x + 2 &= 3 \\ 12x^2 + 16x + 3 &= 3 \\ 12x^2 + 16x &= 0 \\ 4x \left( 3x + 4 \right) &= 0 \\ 4x = 0 \textrm{ or } 3x + 4 &= 0 \\ x = 0 \textrm{ or } x &= -\frac{4}{3} \end{align*}$

And since we know $\displaystyle \begin{align*} y = -3x - 1 \end{align*}$, that means the two points on the ellipse which have a tangent line of slope 1 are $\displaystyle \begin{align*} (0, -1) \end{align*}$ and $\displaystyle \begin{align*} \left( -\frac{4}{3} , 3 \right) \end{align*}$.

Each tangent line will be of the form $\displaystyle \begin{align*} y = mx + c \end{align*}$, so in the first tangent line:

$\displaystyle \begin{align*} -1 &= 1(0) + c \\ -1 &= c \end{align*}$

and in the second tangent line:

$\displaystyle \begin{align*} 3 &= 1 \left( -\frac{4}{3} \right) + c \\ 3 &= -\frac{4}{3} + c \\ \frac{13}{3} &= c \end{align*}$So your two tangent lines are $\displaystyle \begin{align*} y = x - 1 \end{align*}$ and $\displaystyle \begin{align*} y = x + \frac{13}{3} \end{align*}$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top