MHB B's question at Yahoo Answers involving a solid of revolution

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Revolution Solid
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Find the volume V of the solid obtained by rotating the region bounded by x=16-(y-3)^2, x+y=7 about the x-axis?

Here is a link to the original question:

Find the volume V of the solid obtained by rotating the region bounded by x=16-(y-3)^2, x+y=7 about the x-axis? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.

First, let's take a look at the region to be revolved:

View attachment 547

As we can see, it will be cleaner to consider the shell method.

The volume of an arbitrary shell is:

$\displaystyle dV=2\pi rh\,dy$

$\displaystyle r=t$

$\displaystyle h=\left(16-(y-3)^2 \right)-(7-y)=7y-y^2$

and so we have:

$\displaystyle dV=2\pi y(7y-y^2)\,dy=2\pi(7y^2-y^3)\,dy$

Now, to determine the limits of integration, we want to find the roots of:

$\displaystyle h(y)=0$

$\displaystyle 7y-y^2=0$

$\displaystyle y(7-y)=0$

$\displaystyle y=0,\,7$

And so, summing the shells by integration, we find:

$\displaystyle V=2\pi\int_0^7(7y^2-y^3)\,dy=2\pi\left[\frac{7}{3}y^3-\frac{1}{4}y^4 \right]_0^7=2\pi\cdot7^4\left(\frac{1}{3}-\frac{1}{4} \right)=\frac{7^4\pi}{6}=\frac{2401\pi}{6}$
 

Attachments

  • BVolume.jpg
    BVolume.jpg
    9.8 KB · Views: 80
Last edited:
Mathematics news on Phys.org
I tend to prefer the method of washers. The volume can be calculated as

$\displaystyle \begin{align*} V &= \int_0^7{\pi \left[ 16 - (y - 3)^2 \right]^2 \, dy} - \int_0^7 {\pi \left( 7 - y \right)^2 \,dy} \\ &= \pi \int_0^7{ y^4 - 12y^3 + 22y^2 + 84y + 49 \,dy } - \pi \int_0^7{ 49 - 14y + y^2 \, dy } \\ &= \pi \int_0^7{ y^4 - 12y^3 + 21y^2 + 98y \,dy } \\ &= \pi \left[ \frac{y^5}{5} - 3y^4 + 7y^3 + 49y^2 \right]_0^7 \\ &= \pi \left[ \left( \frac{16\, 087}{5} - 7203 + 2401 + 2401 \right) - \left( \frac{0}{5} - 0 + 0 + 0 \right) \right] \\ &= \frac{4802\pi}{5} \end{align*}$

Edit: It appears I rotated this around the y-axis instead of the x. Hope it was helpful anyway :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
11K
Replies
1
Views
11K
Replies
2
Views
10K
Replies
4
Views
11K
Back
Top