B's question at Yahoo Answers involving a solid of revolution

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Revolution Solid
Click For Summary
SUMMARY

The volume V of the solid obtained by rotating the region bounded by the equations x=16-(y-3)^2 and x+y=7 about the x-axis can be calculated using both the shell method and the washer method. The shell method yields a volume of V=2401π/6, while the washer method results in V=4802π/5. The calculations involve integrating the respective functions derived from the boundaries of the region. It is noted that the original rotation was mistakenly referenced as around the y-axis, but the calculations provided are relevant for the x-axis rotation.

PREREQUISITES
  • Understanding of calculus, specifically integration techniques.
  • Familiarity with the shell method for volume calculation.
  • Knowledge of the washer method for volume calculation.
  • Ability to interpret and manipulate equations of curves and lines.
NEXT STEPS
  • Study the shell method for calculating volumes of solids of revolution.
  • Learn the washer method and its application in volume calculations.
  • Explore integration techniques for polynomial functions.
  • Review the concepts of rotating regions around different axes in calculus.
USEFUL FOR

Students and educators in calculus, mathematicians focusing on volume calculations, and anyone interested in solid geometry and integration techniques.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Find the volume V of the solid obtained by rotating the region bounded by x=16-(y-3)^2, x+y=7 about the x-axis?

Here is a link to the original question:

Find the volume V of the solid obtained by rotating the region bounded by x=16-(y-3)^2, x+y=7 about the x-axis? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.

First, let's take a look at the region to be revolved:

View attachment 547

As we can see, it will be cleaner to consider the shell method.

The volume of an arbitrary shell is:

$\displaystyle dV=2\pi rh\,dy$

$\displaystyle r=t$

$\displaystyle h=\left(16-(y-3)^2 \right)-(7-y)=7y-y^2$

and so we have:

$\displaystyle dV=2\pi y(7y-y^2)\,dy=2\pi(7y^2-y^3)\,dy$

Now, to determine the limits of integration, we want to find the roots of:

$\displaystyle h(y)=0$

$\displaystyle 7y-y^2=0$

$\displaystyle y(7-y)=0$

$\displaystyle y=0,\,7$

And so, summing the shells by integration, we find:

$\displaystyle V=2\pi\int_0^7(7y^2-y^3)\,dy=2\pi\left[\frac{7}{3}y^3-\frac{1}{4}y^4 \right]_0^7=2\pi\cdot7^4\left(\frac{1}{3}-\frac{1}{4} \right)=\frac{7^4\pi}{6}=\frac{2401\pi}{6}$
 

Attachments

  • BVolume.jpg
    BVolume.jpg
    9.8 KB · Views: 91
Last edited:
Physics news on Phys.org
I tend to prefer the method of washers. The volume can be calculated as

$\displaystyle \begin{align*} V &= \int_0^7{\pi \left[ 16 - (y - 3)^2 \right]^2 \, dy} - \int_0^7 {\pi \left( 7 - y \right)^2 \,dy} \\ &= \pi \int_0^7{ y^4 - 12y^3 + 22y^2 + 84y + 49 \,dy } - \pi \int_0^7{ 49 - 14y + y^2 \, dy } \\ &= \pi \int_0^7{ y^4 - 12y^3 + 21y^2 + 98y \,dy } \\ &= \pi \left[ \frac{y^5}{5} - 3y^4 + 7y^3 + 49y^2 \right]_0^7 \\ &= \pi \left[ \left( \frac{16\, 087}{5} - 7203 + 2401 + 2401 \right) - \left( \frac{0}{5} - 0 + 0 + 0 \right) \right] \\ &= \frac{4802\pi}{5} \end{align*}$

Edit: It appears I rotated this around the y-axis instead of the x. Hope it was helpful anyway :)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K