It seems that what Czes was saying about "graininess" and last June's Philippe Laurent paper about a gammaray burst is not relevant to Loop/Spinfoam QG, so does not apply to what we are discussing in this thread.
But Atyy's post #37 (just a bit earlier) was interesting. BTW the quote from Barrett points out that (quantum states of) geometry can be discrete while the underlying manifold is continuous.
==quote Atyy
https://www.physicsforums.com/showthread.php?p=3710407 ==
The other attractive view to take spin foams as really discrete is Barrett's
http://arxiv.org/abs/1101.6078.
"This is done by generalising Sakharov’s idea of induced gravity ... For this idea to work, it is necessary for the spacetime geometry to exhibit discreteness at the Planck scale ..."
"Although the state sum models are discrete in nature, it is envisaged that an approximate continuum description should emerge at energies below the Planck scale. Therefore state sum models are constructed with this limit in mind - it guides the expectations of the physical content of the model."
"The wish-list of properties for a state sum model is
• It defines a diffeomorphism-invariant quantum field theory on each 4-manifold
• The state sum can be interpreted as a sum over geometries
• Each geometry is discrete on the Planck scale
• The coupling to matter fields can be defined
• Matter modes are cut off at the Planck scale
• The action can include a cosmological constant
Diffeomorphism invariance here actually means invariance under piecewise-linear homeomorphisms, but this is essentially equivalent. The piecewise-linear homeomorphisms are maps which are linear if the triangulations aresubdivided sufficiently and play the same role as diffeomorphisms in a theory with smooth manifolds. This invariance is seen in the Crane-Yetter model and also in the 3d gravity models, the Ponzano-Regge model and the Turaev-Viro model, the latter having a cosmological constant. The 3d gravity models can be interpreted as a sum over geometries, a feature which is carried over to the four-dimensional gravity models [BC, EPRL, FK],
which however do not respect diffeomorphism invariance."
The red is a serious issue. Loop/Spinfoam QG should respect diffeo invariance. I am not convinced that what Barrett said in this case is right. The issue may now have been addressed by the Freidel Geiller Ziprick paper:
http://arxiv.org/abs/1110.4833
Continuous formulation of the Loop Quantum Gravity phase space
Laurent Freidel, Marc Geiller, Jonathan Ziprick
(Submitted on 21 Oct 2011)
In this paper, we study the discrete classical phase space of loop gravity, which is expressed in terms of the holonomy-flux variables, and show how it is related to the continuous phase space of general relativity. In particular, we prove an isomorphism between the loop gravity discrete phase space and the symplectic reduction of the continuous phase space with respect to a flatness constraint. This gives for the first time a precise relationship between the continuum and holonomy-flux variables. Our construction shows that the fluxes depend on the three-geometry, but also explicitly on the connection, explaining their non commutativity. It also clearly shows that the flux variables do not label a unique geometry, but rather a class of gauge-equivalent geometries. This allows us to resolve the tension between the loop gravity geometrical interpretation in terms of singular geometry, and the spin foam interpretation in terms of piecewise flat geometry, since we establish that both geometries belong to the same equivalence class. This finally gives us a clear understanding of the relationship between the piecewise flat spin foam geometries and Regge geometries, which are only piecewise-linear flat: While Regge geometry corresponds to metrics whose curvature is concentrated around straight edges, the loop gravity geometry correspond to metrics whose curvature is concentrated around not necessarily straight edges.
27 pages