Warning: extremely long-winded post ahead! (Malthe)
Here are two closely related methods to derive the formulas for summations of sequences of natural number powers of integers from 0 - n.
Method 1: A "bottom-up" approach...
We may state:
$\displaystyle\sum_{k=0}^n(k)=\sum_{k=0}^n(k+1)-(n+1)$
$\displaystyle\sum_{k=0}^n(k)=\sum_{k=0}^n(k)+\sum_{k=0}^n(1)-(n+1)$
$\displaystyle0=\sum_{k=0}^n(1)-(n+1)$
$\displaystyle\sum_{k=0}^n(1)=n+1$
Now we may compute:
$\displaystyle\sum_{k=0}^n(k)$
We may state:
$\displaystyle\sum_{k=0}^n\left(k^2 \right)=\sum_{k=0}^n\left((k+1)^2 \right)-(n+1)^2$
$\displaystyle\sum_{k=0}^n\left(k^2 \right)=\sum_{k=0}^n\left(k^2+2k+1 \right)-(n+1)^2$
$\displaystyle\sum_{k=0}^n\left(k^2 \right)=\sum_{k=0}^n\left(k^2 \right)+2\sum_{k=0}^n(k)+\sum_{k=0}^n(1)-(n+1)^2$
$\displaystyle2\sum_{k=0}^n(k)=-\sum_{k=0}^n(1)+(n+1)^2$
Now, using our previous result, we have:
$\displaystyle2\sum_{k=0}^n(k)=-(n+1)+(n+1)^2$
$\displaystyle2\sum_{k=0}^n(k)=(n+1)\left(-1+(n+1) \right)$
$\displaystyle2\sum_{k=0}^n(k)=(n+1)(n)$
$\displaystyle\sum_{k=0}^n(k)=\frac{n(n+1)}{2}$
Now we may continue and find:
$\displaystyle\sum_{k=0}^n\left(k^2 \right)$
$\displaystyle\sum_{k=0}^n\left(k^3 \right)=\sum_{k=0}^n\left((k+1)^3 \right)-(n+1)^3$
$\displaystyle\sum_{k=0}^n\left(k^3 \right)=\sum_{k=0}^n\left(k^3+3k^2+3k+1 \right)-(n+1)^3$
$\displaystyle\sum_{k=0}^n\left(k^3 \right)=\sum_{k=0}^n\left(k^3 \right)+3\sum_{k=0}^n\left(k^2 \right)+3\sum_{k=0}^n(k)+\sum_{k=0}^n(1)-(n+1)^3$
$\displaystyle3\sum_{k=0}^n\left(k^2 \right)=-3\sum_{k=0}^n(k)-\sum_{k=0}^n(1)+(n+1)^3$
Using our previous results, we have:
$\displaystyle3\sum_{k=0}^n\left(k^2 \right)=-3\left(\frac{n(n+1)}{2} \right)-(n+1)+(n+1)^3$
$\displaystyle3\sum_{k=0}^n\left(k^2 \right)=(n+1)\left(-\frac{3n}{2}-1+(n+1)^2 \right)$
$\displaystyle3\sum_{k=0}^n\left(k^2 \right)=(n+1)\left(-\frac{3n}{2}-1+n^2+2n+1 \right)$
$\displaystyle3\sum_{k=0}^n\left(k^2 \right)=(n+1)\left(n^2+\frac{n}{2} \right)$
$\displaystyle3\sum_{k=0}^n\left(k^2 \right)=\frac{n(n+1)(2n+1)}{2}$
$\displaystyle\sum_{k=0}^n\left(k^2 \right)=\frac{n(n+1)(2n+1)}{6}$
We may continue this process, to find further power summations.
Method 2: A recursion approach...
Suppose we want to find:
$\displaystyle S_n=\sum_{k=0}^n\left(k^3 \right)$
We may use the inhomogeneous recursion to state:
$\displaystyle S_n=S_{n-1}+n^3$
Now, we may use symbolic differencing to ultimately derive a homogeneous recursion.
We begin by replacing n with n + 1:
$\displaystyle S_{n+1}=S_{n}+(n+1)^3$
Subtracting the former from the latter, there results:
$\displaystyle S_{n+1}=2S_{n}-S_{n-1}+3n^2+3n+1$
$\displaystyle S_{n+2}=2S_{n+1}-S_{n}+3(n+1)^2+3(n+1)+1$
Subtracting again:
$\displaystyle S_{n+2}=3S_{n+1}-3S_{n}+S_{n-1}+6n+6$
$\displaystyle S_{n+3}=3S_{n+2}-3S_{n+1}+S_{n}+6(n+1)+6$
Subtracting again:
$\displaystyle S_{n+3}=4S_{n+2}-6S_{n+1}+4S_{n}-S_{n-1}+6$
$\displaystyle S_{n+4}=4S_{n+3}-6S_{n+2}+4S_{n+1}-S_{n}+6$
Subtracting again:
$\displaystyle S_{n+4}=5S_{n+3}-10S_{n+2}+10S_{n+1}-5S_{n}+S_{n-1}$
Now we have a homogeneous recursion whose associated characteristic equation is:
$\displaystyle (r-1)^5=0$
Since we have the root $\displaystyle r=1$ of multiplicity 5, we know the closed form for the sum will take the form:
$\displaystyle S_n=k_0+k_1n+k_2n^2+k_3n^3+k_4n^4$
We may use known initial values to determine the constants $\displaystyle k_i$.
$\displaystyle S_0=k_0=0$
This means, we are left with the 4X4 system:
$\displaystyle k_1+k_2+k_3+k_4=1$
$\displaystyle 2k_1+4k_2+8k_3+16k_4=9$
$\displaystyle 3k_1+9k_2+27k_3+81k_4=36$
$\displaystyle 4k_1+16k_2+64k_3+256k_4=100$
Did you notice we get the squares of successive triangular numbers? Anyway, solving this system, we find:
$\displaystyle k_1=0,k_2=\frac{1}{4},k_3=\frac{1}{2},k_4=\frac{1}{4}$
And so, we have:
$\displaystyle S_n=\frac{1}{4}n^2+\frac{1}{2}n^3+\frac{1}{4}n^4= \frac{n^4+2n^3+n^2}{4}=$
$\displaystyle\frac{n^2(n+1)^2}{4}=\left( \frac{n(n+1)}{2} \right)^2$