MHB C F Gauss, on how to add all numbers of 1 to 100?

  • Thread starter Thread starter CaptainBlack
  • Start date Start date
  • Tags Tags
    Gauss Numbers
Click For Summary
Carl Gauss's method for summing the numbers from 1 to 100 involves pairing the first and last numbers, resulting in consistent sums of 101. This can be expressed mathematically as (1+100) + (2+99) + ... + (50+51) = 50 * 101, leading to a total of 5050. The general formula for the sum of the first n natural numbers is derived as n(n + 1)/2, which confirms the result for n = 100. Alternative proofs and methods for summing sequences are also discussed, emphasizing the versatility of Gauss's approach. The discussion highlights both the historical context and mathematical significance of Gauss's summation technique.
CaptainBlack
Messages
801
Reaction score
0
Mark on Yahoo answers asks:

Carl gauss 1777 1855 , on how to add all numbers of 1 to 100?

I can only add from 1 to 100 in order, apparently he could add lighteningly fast, and backwards, can anyone explain how in the confines of one message on here please

Allegedly his method was something like:

$(1+100)+(2+99)+ ... +(99+2)+(100+1)=2(1+2+...+100)$

But the left hand side is $101\times 100$, so $1+2+..100=101\times 100/2$

(Like Marlow's Dr Faustus he could sum them forwards and backwards - but had no need of anagramatisation)

CB
 
Last edited:
Mathematics news on Phys.org
This also works for any sum:

$\displaystyle \sum_{k = 1}^{n} k = 1 + 2 + \cdots + n $

This sum can be reorganized in this fashion:

$\displaystyle \left ( 1 + \left ( n \right ) \right ) + \left ( 2 + \left ( n - 1 \right ) \right ) + \cdots + \left (n + \left (1 \right ) \right )$

This produces $n$ sums of $n + 1$, so the total sum is $n(n + 1)$. But note that this goes through the list twice, from the left and from the right (for instance, $1$ is added to $n$ at the beginning and at the end). So this is actually twice the sum we need, we conclude:

$\displaystyle \sum_{k = 1}^{n} k = \frac{n(n + 1)}{2}$

$n = 100$ can then be easily calculated from the formula, just as can $n = 4885$ or $n = 6$ ;)
 
I would like to share two more ways of doing this.

Proof #0 (Notice that what Gauss did is basically this):

$\begin{aligned} \displaystyle & \sum_{0 \le k \le n}k = \sum_{0 \le k \le n}(n-k) = n\sum_{0 \le k \le n}-\sum_{0 \le k \le n}k \\& \implies 2\sum_{0 \le k \le n}k = n(n+1) \implies \sum_{0 \le k \le n}k = \frac{1}{2}n(n+1).\end{aligned}$

Proof #1 (Now try that with $\sum_{0 \le k \le n}k^2$ and you will be pleasantly surprised):

$\begin{aligned} \displaystyle & \sum_{0 \le k \le n}k^2 = \sum_{0 \le k \le n}(n-k)^2 = n^2\sum_{0 \le k \le n}-2n\sum_{0 \le k \le n}k+\sum_{0 \le k \le n}k^2 \\& \implies 2n\sum_{0 \le k \le n}k = n^2(n+1) \implies \sum_{0 \le k \le n}k = \frac{1}{2}n(n+1).\end{aligned}$

Proof #2 (Writing it as a double sum and switching the order of summation):

$\begin{aligned}\displaystyle & \begin{aligned}\sum_{1 \le k \le n}k & = \sum_{1 \le k \le n}~\sum_{1 \le r \le k} = \sum_{1 \le r \le n} ~\sum_{r \le k \le n} = \sum_{1 \le r \le n}\bigg(\sum_{1 \le k \le n}-\sum_{1 \le k \le r-1}\bigg) \\& =\sum_{1 \le r \le n}\bigg(n-r+1\bigg) = n\sum_{1 \le k \le n}-\sum_{1 \le k \le n}k+\sum_{1 \le k \le n}\end{aligned} \\& \implies 2\sum_{1 \le k \le n}k = n^2+n \implies \sum_{1 \le k \le n}k = \frac{1}{2}n(n+1), ~ \mathbb{Q. E. D.}\end{aligned}$
 
Last edited:
Warning: extremely long-winded post ahead! (Malthe)

Here are two closely related methods to derive the formulas for summations of sequences of natural number powers of integers from 0 - n.

Method 1: A "bottom-up" approach...

We may state:

$\displaystyle\sum_{k=0}^n(k)=\sum_{k=0}^n(k+1)-(n+1)$

$\displaystyle\sum_{k=0}^n(k)=\sum_{k=0}^n(k)+\sum_{k=0}^n(1)-(n+1)$

$\displaystyle0=\sum_{k=0}^n(1)-(n+1)$

$\displaystyle\sum_{k=0}^n(1)=n+1$

Now we may compute:

$\displaystyle\sum_{k=0}^n(k)$

We may state:

$\displaystyle\sum_{k=0}^n\left(k^2 \right)=\sum_{k=0}^n\left((k+1)^2 \right)-(n+1)^2$

$\displaystyle\sum_{k=0}^n\left(k^2 \right)=\sum_{k=0}^n\left(k^2+2k+1 \right)-(n+1)^2$

$\displaystyle\sum_{k=0}^n\left(k^2 \right)=\sum_{k=0}^n\left(k^2 \right)+2\sum_{k=0}^n(k)+\sum_{k=0}^n(1)-(n+1)^2$

$\displaystyle2\sum_{k=0}^n(k)=-\sum_{k=0}^n(1)+(n+1)^2$

Now, using our previous result, we have:

$\displaystyle2\sum_{k=0}^n(k)=-(n+1)+(n+1)^2$

$\displaystyle2\sum_{k=0}^n(k)=(n+1)\left(-1+(n+1) \right)$

$\displaystyle2\sum_{k=0}^n(k)=(n+1)(n)$

$\displaystyle\sum_{k=0}^n(k)=\frac{n(n+1)}{2}$

Now we may continue and find:

$\displaystyle\sum_{k=0}^n\left(k^2 \right)$

$\displaystyle\sum_{k=0}^n\left(k^3 \right)=\sum_{k=0}^n\left((k+1)^3 \right)-(n+1)^3$

$\displaystyle\sum_{k=0}^n\left(k^3 \right)=\sum_{k=0}^n\left(k^3+3k^2+3k+1 \right)-(n+1)^3$

$\displaystyle\sum_{k=0}^n\left(k^3 \right)=\sum_{k=0}^n\left(k^3 \right)+3\sum_{k=0}^n\left(k^2 \right)+3\sum_{k=0}^n(k)+\sum_{k=0}^n(1)-(n+1)^3$

$\displaystyle3\sum_{k=0}^n\left(k^2 \right)=-3\sum_{k=0}^n(k)-\sum_{k=0}^n(1)+(n+1)^3$

Using our previous results, we have:

$\displaystyle3\sum_{k=0}^n\left(k^2 \right)=-3\left(\frac{n(n+1)}{2} \right)-(n+1)+(n+1)^3$

$\displaystyle3\sum_{k=0}^n\left(k^2 \right)=(n+1)\left(-\frac{3n}{2}-1+(n+1)^2 \right)$

$\displaystyle3\sum_{k=0}^n\left(k^2 \right)=(n+1)\left(-\frac{3n}{2}-1+n^2+2n+1 \right)$

$\displaystyle3\sum_{k=0}^n\left(k^2 \right)=(n+1)\left(n^2+\frac{n}{2} \right)$

$\displaystyle3\sum_{k=0}^n\left(k^2 \right)=\frac{n(n+1)(2n+1)}{2}$

$\displaystyle\sum_{k=0}^n\left(k^2 \right)=\frac{n(n+1)(2n+1)}{6}$

We may continue this process, to find further power summations.

Method 2: A recursion approach...

Suppose we want to find:

$\displaystyle S_n=\sum_{k=0}^n\left(k^3 \right)$

We may use the inhomogeneous recursion to state:

$\displaystyle S_n=S_{n-1}+n^3$

Now, we may use symbolic differencing to ultimately derive a homogeneous recursion.

We begin by replacing n with n + 1:

$\displaystyle S_{n+1}=S_{n}+(n+1)^3$

Subtracting the former from the latter, there results:

$\displaystyle S_{n+1}=2S_{n}-S_{n-1}+3n^2+3n+1$

$\displaystyle S_{n+2}=2S_{n+1}-S_{n}+3(n+1)^2+3(n+1)+1$

Subtracting again:

$\displaystyle S_{n+2}=3S_{n+1}-3S_{n}+S_{n-1}+6n+6$

$\displaystyle S_{n+3}=3S_{n+2}-3S_{n+1}+S_{n}+6(n+1)+6$

Subtracting again:

$\displaystyle S_{n+3}=4S_{n+2}-6S_{n+1}+4S_{n}-S_{n-1}+6$

$\displaystyle S_{n+4}=4S_{n+3}-6S_{n+2}+4S_{n+1}-S_{n}+6$

Subtracting again:

$\displaystyle S_{n+4}=5S_{n+3}-10S_{n+2}+10S_{n+1}-5S_{n}+S_{n-1}$

Now we have a homogeneous recursion whose associated characteristic equation is:

$\displaystyle (r-1)^5=0$

Since we have the root $\displaystyle r=1$ of multiplicity 5, we know the closed form for the sum will take the form:

$\displaystyle S_n=k_0+k_1n+k_2n^2+k_3n^3+k_4n^4$

We may use known initial values to determine the constants $\displaystyle k_i$.

$\displaystyle S_0=k_0=0$

This means, we are left with the 4X4 system:

$\displaystyle k_1+k_2+k_3+k_4=1$

$\displaystyle 2k_1+4k_2+8k_3+16k_4=9$

$\displaystyle 3k_1+9k_2+27k_3+81k_4=36$

$\displaystyle 4k_1+16k_2+64k_3+256k_4=100$

Did you notice we get the squares of successive triangular numbers? Anyway, solving this system, we find:

$\displaystyle k_1=0,k_2=\frac{1}{4},k_3=\frac{1}{2},k_4=\frac{1}{4}$

And so, we have:

$\displaystyle S_n=\frac{1}{4}n^2+\frac{1}{2}n^3+\frac{1}{4}n^4= \frac{n^4+2n^3+n^2}{4}=$

$\displaystyle\frac{n^2(n+1)^2}{4}=\left( \frac{n(n+1)}{2} \right)^2$
 
a nice combinatorial proof

View attachment 348To each yellow circle we can associate a pair of green circles in the way suggested by the drawing. This shows a bijection between (and hence the same number of) all the yellow circles and all the pairs of green circles.

Here, there are $1+2+3+4+5+6+7+8$ yellow circles, and the number of green-circle pairs is $\binom{9}{2}$; so $1+2+3+4+5+6+7+8=\binom{9}{2}$.

(I saw this 'proof without words' in a lecture by Gil Kalai)
 

Attachments

  • ללא שם.jpg
    ללא שם.jpg
    46.7 KB · Views: 126
CaptainBlack said:
Mark on Yahoo answers asks:
Allegedly his method was something like:

$(1+100)+(2+99)+ ... +(99+2)+(100+1)=2(1+2+...+100)$

But the left hand side is $101\times 100$, so $1+2+..100=101\times 100/2$

(Like Marlow's Dr Faustus he could sum them forwards and backwards - but had no need of anagramatisation)

CB

The way I heard it was that he noted, as you have, that 1+ 100= 101, 2+ 99= 101, etc. until 50+ 51= 101 so there were 50 sums, each totalling 101: 50(101)= 5050.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
6K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
35K
Replies
20
Views
6K
  • · Replies 6 ·
Replies
6
Views
6K
  • · Replies 8 ·
Replies
8
Views
21K