MHB -c5.LCM and Prime Factorization of A,B,C

Click For Summary
The least common multiple (LCM) of A, B, and C is calculated by taking the highest power of each prime factor present in the numbers. For A = 2 * 3^2 * 7 * 13 * 23^8, B = 2 * 3^5 * 5^9 * 13, and C = 2 * 5 * 11^8 * 13^3, the LCM is determined to be 2 * 3^5 * 5^9 * 7 * 11^8 * 13^3 * 23^8. The prime factorization of the LCM reflects the highest powers of each prime factor found across A, B, and C. This calculation emphasizes the importance of identifying the correct prime factors and their respective powers. The final expression for the LCM is 2 * 3^5 * 5^9 * 7 * 11^8 * 13^3 * 23^8.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Build the least common multiple of A, B, and C
Then write the prime factorization of the least common multiple of A, B, and C.
$A = 2 \cdot 3^2 \cdot 7 \cdot 13 \cdot 23^8$
$B = 2 3^5 \cdot 5^9 \cdot 13$
$C = 2 \cdot 5 \cdot 11^8 \cdot 13^3$
$\boxed{?}$

ok this only has a single answer

definition: Prime factorization is a way of expressing a number as a product of its prime factors.
A prime number is a number that has exactly two factors, 1 and the number itself.


so is our first step $A\cdot B \cdot C$
 
Last edited:
Mathematics news on Phys.org
No, of course not. ABC would be a "common multiple" of A, B, and C but the "LEAST common multiple" only if all three numbers are relatively prime which is not the case here. I see that A and C have a factor of 2 so the LCM will have a factor of 2. A has a factor of [math]3^2[/math] so the LCM will have [math]3^2[/math] as factor. B has a factor of [math]5^9[/math] and C has a factor of 5 so the LCM will have [math]5^9[/math] as a factor. B has 7 as a factor so the LCM has 7 as a factor. C has a factor of 11 so the LCM will have 11 as a factor. A and B have 13 as a factor and C has [math]13^3[/math] as a factor so the LCM will have [math]13^3[/math] as a factor. A has [math]23^8[/math] as a factor and [math]23^5[/math] so the LCM has [math]23^8[/math] as a factor.

The least common multiple of A, B, and C is [math]2(3^2)(5^9)(7)(11)(13^3)(23^8)[/math].
 
sorry I just noticed that $B=2\cdot 3^5\cdot 5^9 \cdot 13$
probably will change every thing
I should just OP the screenshots

Screenshot 2021-12-10 12.52.01 PM.png
 
You still use the same principal:
for the greatest common factor of a set of numbers, take the product of all primes to the smallest power in the given set and for the least common multiple take the product of all primes to the highest power.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads