Calculate limits as distributions

Click For Summary

Discussion Overview

The discussion revolves around calculating limits as distributions, specifically focusing on the limits involving sine and cosine functions. Participants explore the mathematical framework for interpreting these limits in the context of distribution theory, integrating test functions, and applying Fourier transforms.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant presents limits involving sine and cosine functions and attempts to integrate them with a test function, leading to a proposed limit of \(\frac{\pi}{2}\) for a specific case.
  • Another participant comments on the need for the limit to exhibit the sifting property characteristic of delta distributions, suggesting that the integral should yield \(\cos(Q')\) when the integrand is adjusted.
  • A different participant proposes expanding the sine function into exponential terms and suggests expressing the integral as a sum of Fourier transforms to facilitate the calculation.
  • One participant elaborates on the use of Fourier transforms and provides a detailed derivation, concluding that the limit can be shown to equal \(\pi \delta(Q-Q')\), while seeking confirmation of the correctness of their demonstration.
  • Another participant expresses agreement with the last demonstration, indicating that it appears correct.

Areas of Agreement / Disagreement

Participants generally agree on the approach of using Fourier transforms and the properties of distributions, but there are differing views on the specific calculations and interpretations of the limits. The discussion remains unresolved regarding the correctness of the initial limit calculation.

Contextual Notes

Participants reference specific mathematical properties and assumptions related to distributions and integrals, but these assumptions are not fully explored or agreed upon, leaving some aspects of the discussion open to interpretation.

Haorong Wu
Messages
419
Reaction score
90
TL;DR
How to calculate the following limits, when viewed as distributions?
Hi, there. I am reading this thesis. On page 146, it reads that

when viewed as distributions, one can show that the following limits holds:
$$\lim_{r\rightarrow \infty}\frac {\sin ((Q-Q')r)}{Q-Q'}=\pi \delta(Q-Q') ,$$
$$\lim_{r\rightarrow \infty}\frac {\cos ((Q+Q')r)}{Q+Q'}=0 .$$

I do not know how to calculate the limits when they are viewed as distributions. I am trying to integrate a test function with the limits. So I try (##Q## is defined as ##Q>0##) $$\lim_ {r\rightarrow \infty} \int_{0}^\infty dQ \cos ((Q-Q')r )\frac {\sin ((Q-Q')r)}{Q-Q'}=\frac \pi 2,$$ while ##\int_{-\infty}^\infty dQ \cos ((Q-Q')r ) \delta (Q-Q')=1##. Then I only have ##\lim_{r\rightarrow \infty}\frac {\sin ((Q-Q')r)}{Q-Q'}=\pi \delta(Q-Q') /2##. Is this wrong? Thanks.
 
Physics news on Phys.org
Haorong Wu said:
TL;DR Summary: How to calculate the following limits, when viewed as distributions?

Hi, there. I am reading this thesis. On page 146, it reads that
I do not know how to calculate the limits when they are viewed as distributions. I am trying to integrate a test function with the limits. So I try (##Q## is defined as ##Q>0##) $$\lim_ {r\rightarrow \infty} \int_{0}^\infty dQ \cos ((Q-Q')r )\frac {\sin ((Q-Q')r)}{Q-Q'}=\frac \pi 2,$$
I have no real answer for you, just a comment.
You need to show that the limit on the left of your equation has the sifting property just like a delta distribution has.
So the integral you state should give cos(Q') if you put cos(Q) (rather than cos(Q-Q')) into the integrand.
You ought to show this in general though: f(Q) is turned into f(Q') by the sifting integral.
 
I would expand <br /> \sin r(Q - Q&#039;) = \frac{e^{ir(Q-Q&#039;)} -e^{-ir(Q-Q&#039;)}}{2i} and express the integral <br /> \int_{-\infty}^\infty f(Q) \frac{\sin(r(Q-Q&#039;))}{Q-Q&#039;}\,dQ as a sum of fourier transforms.
 
  • Like
Likes   Reactions: Philip Koeck
Thanks, @Philip Koeck and @pasmith. I will try to demonstrate the first expression.

Suppose ##F(\omega)## is the Fourier transform of ##f(Q)##, i.e., ##f(Q)=(2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q}##. Then the integral \begin{align}
&~~\lim_{r\rightarrow \infty} \int_0^\infty dQ f(Q) \frac {\sin ((Q-Q')r)}{Q-Q'} \nonumber \\
&=\lim_{r\rightarrow \infty} \int_0^\infty dQ (2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q} \frac {\sin ((Q-Q')r)}{Q-Q'} \nonumber \\
&=(2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q' } \lim_{r\rightarrow \infty} \int_0^\infty dQ e^{-i\omega (Q-Q')} \frac {\sin ((Q-Q')r)}{Q-Q'}.\nonumber
\end{align} Letting ##x=Q-Q'##, we have ##\lim_{r\rightarrow \infty} \int_0^\infty dQ e^{-i\omega (Q-Q')} \frac {\sin ((Q-Q')r)}{Q-Q'}=\lim_{r\rightarrow \infty}\int_{-Q'}^\infty dx e^{-i\omega x}\frac {\sin (xr)}{x}##. Further, setting ##y=xr##. it becomes \begin{align}&~~\lim_{r\rightarrow \infty}\int_{-\infty}^\infty dy e^{-i\omega y/r}\frac {\sin (y)}{y} \nonumber \\
&=\lim_{r\rightarrow \infty}\int_0^\infty dy (e^{-i\omega y/r}\frac {\sin (y)}{y}+e^{i\omega y/r}\frac {\sin (y)}{y})\nonumber \\
&=\lim_{r\rightarrow \infty}\int_0^\infty dy 2\cos(\frac {\omega y}{r})\frac {\sin (y)}{y}\nonumber \\ &=\int_0^\infty dy 2\frac {\sin (y)}{y}=\pi. \nonumber\end{align}
Therefore, ##\lim_{r\rightarrow \infty} \int_0^\infty dQ f(Q) \frac {\sin ((Q-Q')r)}{Q-Q'}=\pi (2\pi)^{1/2} \int d\omega F(\omega) e^{-i\omega Q' }=\pi f(Q')##. Hence ##\lim_{r\rightarrow \infty} \frac {\sin ((Q-Q')r)}{Q-Q'}=\pi \delta(Q-Q')##.

Is the demonstration correct?
 
  • Like
Likes   Reactions: Philip Koeck
Haorong Wu said:
Thanks, @Philip Koeck and @pasmith. I will try to demonstrate the first expression.

Suppose ##F(\omega)## is the Fourier transform of ##f(Q)##, i.e., ##f(Q)=(2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q}##. Then the integral \begin{align}
&~~\lim_{r\rightarrow \infty} \int_0^\infty dQ f(Q) \frac {\sin ((Q-Q')r)}{Q-Q'} \nonumber \\
&=\lim_{r\rightarrow \infty} \int_0^\infty dQ (2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q} \frac {\sin ((Q-Q')r)}{Q-Q'} \nonumber \\
&=(2\pi)^{-1/2} \int d\omega F(\omega) e^{-i\omega Q' } \lim_{r\rightarrow \infty} \int_0^\infty dQ e^{-i\omega (Q-Q')} \frac {\sin ((Q-Q')r)}{Q-Q'}.\nonumber
\end{align} Letting ##x=Q-Q'##, we have ##\lim_{r\rightarrow \infty} \int_0^\infty dQ e^{-i\omega (Q-Q')} \frac {\sin ((Q-Q')r)}{Q-Q'}=\lim_{r\rightarrow \infty}\int_{-Q'}^\infty dx e^{-i\omega x}\frac {\sin (xr)}{x}##. Further, setting ##y=xr##. it becomes \begin{align}&~~\lim_{r\rightarrow \infty}\int_{-\infty}^\infty dy e^{-i\omega y/r}\frac {\sin (y)}{y} \nonumber \\
&=\lim_{r\rightarrow \infty}\int_0^\infty dy (e^{-i\omega y/r}\frac {\sin (y)}{y}+e^{i\omega y/r}\frac {\sin (y)}{y})\nonumber \\
&=\lim_{r\rightarrow \infty}\int_0^\infty dy 2\cos(\frac {\omega y}{r})\frac {\sin (y)}{y}\nonumber \\ &=\int_0^\infty dy 2\frac {\sin (y)}{y}=\pi. \nonumber\end{align}
Therefore, ##\lim_{r\rightarrow \infty} \int_0^\infty dQ f(Q) \frac {\sin ((Q-Q')r)}{Q-Q'}=\pi (2\pi)^{1/2} \int d\omega F(\omega) e^{-i\omega Q' }=\pi f(Q')##. Hence ##\lim_{r\rightarrow \infty} \frac {\sin ((Q-Q')r)}{Q-Q'}=\pi \delta(Q-Q')##.

Is the demonstration correct?
Looks good to me.
 
  • Like
Likes   Reactions: Haorong Wu

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K