MHB Calculating an integral norm in L2

  • Thread starter Thread starter hmmmmm
  • Start date Start date
  • Tags Tags
    Integral L2 Norm
Click For Summary
SUMMARY

The operator norm of the integral operator \( T \) defined on \( H = L^2(0,1) \) by \( Tf(s) = \int_0^1 (5s^2t^2 + 2)(f(t))dt \) is calculated using the relation \( ||T|| \leq \sqrt{\frac{50}{6}} \). By taking \( f = 1 \), the equality \( ||T|| = \frac{\sqrt{65}}{3} \) is established. The operator \( T \) is self-adjoint due to its symmetric kernel \( k(s,t) = 5s^2t^2 + 2 \), and its norm can be determined by finding an orthonormal basis for the two-dimensional subspace spanned by \( f(s) = s^2 \) and \( f(s) = 1 \). The final step involves computing the eigenvalues of the resulting \( 2 \times 2 \) matrix formed by the coefficients of \( T(f_1) \) and \( T(f_2) \).

PREREQUISITES
  • Understanding of operator theory in functional analysis
  • Familiarity with \( L^2 \) spaces and their properties
  • Knowledge of Gram-Schmidt orthonormalization process
  • Basic concepts of eigenvalues and eigenvectors in linear algebra
NEXT STEPS
  • Study the Gram-Schmidt process for constructing orthonormal bases in \( L^2 \) spaces
  • Learn about self-adjoint operators and their properties in functional analysis
  • Explore the computation of operator norms for compact operators
  • Investigate the spectral theorem for Hermitian matrices and its applications
USEFUL FOR

Mathematicians, particularly those specializing in functional analysis, graduate students studying operator theory, and researchers working with integral operators in Hilbert spaces.

hmmmmm
Messages
27
Reaction score
0
If I have the following operator for $H=L^2(0,1)$:$$Tf(s)=\int_0^1 (5s^2t^2+2)(f(t))dt$$ and I wish to calculate $||T||$, how do I go about doing this:
I know that in $L^2(0,1)$ we have that relation:$$||T||\leq \left ( \int_0^1\int_0^1 |(5s^2t^2+2)|^2dtds\right ) ^{\frac{1}{2}}=\sqrt{\frac{50}{6}}.$$I also have that $||T||=\sup_{||f||_2\leq1} ||Tf(s)||$ so if I take $f=1$ then this gives equality above and I am done, is that correct?Thanks for any help
 
Physics news on Phys.org
hmmm16 said:
If I have the following operator for $H=L^2(0,1)$: $$Tf(s)=\int_0^1 (5s^2t^2+2)(f(t))dt$$ and I wish to calculate $||T||$, how do I go about doing this:

I know that in $L^2(0,1)$ we have that relation: $$||T||\leq \left ( \int_0^1\int_0^1 |(5s^2t^2+2)|^2dtds\right ) ^{\frac{1}{2}}=\sqrt{\frac{50}{6}}.$$
Check that you have done this correctly! I make the answer $\dfrac{\sqrt{65}}3$.

hmmm16 said:
I also have that $||T||=\sup_{||f||_2\leq1} ||Tf(s)||$ so if I take $f=1$ then this gives equality above and I am done, is that correct?
I do not understand that at all, and I don't believe it.

To find the operator norm of $T$, notice first that because the kernel $k(s,t) = 5s^2t^2+2$ is real-valued and symmetric in $s$ and $t$, it follows that $T$ is selfadjoint. Next, notice that, for any $f\in L^2(0,1)$, $$Tf(s) = \int_0^1 (5s^2t^2+2)(f(t))\,dt = s^2\int_0^15t^2f(t)\,dt + \int_0^12f(t)\,dt,$$ so that $T(f)$ lies in the two-dimensional subspace of $L^2(0,1)$ spanned by the functions $f(s) = s^2$ and $f(s) = 1$. Since $T$ is selfadjoint, its norm will be the norm of its restriction to that subspace.

So the strategy for finding $\|T\|$ is (1) use Gram–Schmidt to find an orthonormal basis for that subspace (I think that you can take the functions $f_1(s) = 1$ and $f_2(s) = \frac32\sqrt5\bigl(s^2-\frac13\bigr)$, but check that I got that right); (2) find what $T$ does to the two vectors in that basis, expressing $T(f_1)$ and $T(f_2)$ as linear combinations of $f_1$ and $f_2$.

That way, you reduce the problem to finding the norm of the $2\times2$-matrix of those coefficients. What's more, the matrix will be hermitian (because $T$ is selfadjoint), and the norm of the matrix will be equal to the size of its larger eigenvalue (in absolute value).

Operators given by integral kernels are always compact, and in this case the operator $T$ has finite rank 2. That is what makes it possible to find its norm explicitly.
 
As shown by this animation, the fibers of the Hopf fibration of the 3-sphere are circles (click on a point on the sphere to visualize the associated fiber). As far as I understand, they never intersect and their union is the 3-sphere itself. I'd be sure whether the circles in the animation are given by stereographic projection of the 3-sphere from a point, say the "equivalent" of the ##S^2## north-pole. Assuming the viewpoint of 3-sphere defined by its embedding in ##\mathbb C^2## as...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K