MHB Calculating $f_n(\theta)$ for Positive Integers $n$

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integers Positive
AI Thread Summary
The function \( f_n(\theta) \) is defined as \( f_n(\theta) = \tan \frac{\theta}{2}(1+\sec \theta)(1+\sec 2\theta)(1+\sec 4 \theta)\cdots (1+\sec2^n \theta) \). It has been proven through mathematical induction that \( f_n(\theta) = \tan(2^n \theta) \) for positive integers \( n \). Consequently, the values for \( f_2 \left(\frac{\pi}{16}\right) \), \( f_3 \left(\frac{\pi}{32}\right) \), \( f_4 \left(\frac{\pi}{64}\right) \), and \( f_5 \left(\frac{\pi}{128}\right) \) all equal \( \tan\left(\frac{\pi}{4}\right) \), which is 1. This result simplifies the calculations for these specific cases. The discussion highlights the elegant relationship between the function and the tangent of doubled angles.
sbhatnagar
Messages
87
Reaction score
0
For a positive integer $n$, let

$$f_n(\theta)=\tan \frac{\theta}{2}(1+\sec \theta)(1+\sec 2\theta)(1+\sec 4 \theta)\cdots (1+\sec2^n \theta)$$

Find the value of

(i) $f_2 \left(\dfrac{\pi}{16} \right)$

(ii) $f_3 \left(\dfrac{\pi}{32} \right)$

(iii) $f_4 \left(\dfrac{\pi}{64} \right)$

(iv) $f_5 \left(\dfrac{\pi}{128} \right)$
 
Mathematics news on Phys.org
sbhatnagar said:
For a positive integer $n$, let

$$f_n(\theta)=\tan \frac{\theta}{2}(1+\sec \theta)(1+\sec 2\theta)(1+\sec 4 \theta)\cdots (1+\sec2^n \theta)$$

Find the value of

(i) $f_2 \left(\dfrac{\pi}{16} \right)$

(ii) $f_3 \left(\dfrac{\pi}{32} \right)$

(iii) $f_4 \left(\dfrac{\pi}{64} \right)$

(iv) $f_5 \left(\dfrac{\pi}{128} \right)$

Hi sbhatnagar, :)

It can be shown by mathematical induction that,

\[f_n(\theta)=\tan{2^{n}\theta}\mbox{ where }n\in\mathbb{Z}^{+}\]

Therefore,

\[f_2 \left(\dfrac{\pi}{16} \right)=f_3 \left(\dfrac{\pi}{32} \right)=f_4 \left(\dfrac{\pi}{64} \right)=f_5 \left(\dfrac{\pi}{128} \right)=\tan\left(\frac{\pi}{4}\right)=1\]

Kind Regards,
Sudharaka.
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
1
Views
2K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
3
Views
2K
Back
Top