MHB Calculating $f_n(\theta)$ for Positive Integers $n$

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integers Positive
Click For Summary
The function \( f_n(\theta) \) is defined as \( f_n(\theta) = \tan \frac{\theta}{2}(1+\sec \theta)(1+\sec 2\theta)(1+\sec 4 \theta)\cdots (1+\sec2^n \theta) \). It has been proven through mathematical induction that \( f_n(\theta) = \tan(2^n \theta) \) for positive integers \( n \). Consequently, the values for \( f_2 \left(\frac{\pi}{16}\right) \), \( f_3 \left(\frac{\pi}{32}\right) \), \( f_4 \left(\frac{\pi}{64}\right) \), and \( f_5 \left(\frac{\pi}{128}\right) \) all equal \( \tan\left(\frac{\pi}{4}\right) \), which is 1. This result simplifies the calculations for these specific cases. The discussion highlights the elegant relationship between the function and the tangent of doubled angles.
sbhatnagar
Messages
87
Reaction score
0
For a positive integer $n$, let

$$f_n(\theta)=\tan \frac{\theta}{2}(1+\sec \theta)(1+\sec 2\theta)(1+\sec 4 \theta)\cdots (1+\sec2^n \theta)$$

Find the value of

(i) $f_2 \left(\dfrac{\pi}{16} \right)$

(ii) $f_3 \left(\dfrac{\pi}{32} \right)$

(iii) $f_4 \left(\dfrac{\pi}{64} \right)$

(iv) $f_5 \left(\dfrac{\pi}{128} \right)$
 
Mathematics news on Phys.org
sbhatnagar said:
For a positive integer $n$, let

$$f_n(\theta)=\tan \frac{\theta}{2}(1+\sec \theta)(1+\sec 2\theta)(1+\sec 4 \theta)\cdots (1+\sec2^n \theta)$$

Find the value of

(i) $f_2 \left(\dfrac{\pi}{16} \right)$

(ii) $f_3 \left(\dfrac{\pi}{32} \right)$

(iii) $f_4 \left(\dfrac{\pi}{64} \right)$

(iv) $f_5 \left(\dfrac{\pi}{128} \right)$

Hi sbhatnagar, :)

It can be shown by mathematical induction that,

\[f_n(\theta)=\tan{2^{n}\theta}\mbox{ where }n\in\mathbb{Z}^{+}\]

Therefore,

\[f_2 \left(\dfrac{\pi}{16} \right)=f_3 \left(\dfrac{\pi}{32} \right)=f_4 \left(\dfrac{\pi}{64} \right)=f_5 \left(\dfrac{\pi}{128} \right)=\tan\left(\frac{\pi}{4}\right)=1\]

Kind Regards,
Sudharaka.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
825
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
1K
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K