Calculating Flux of Vector Field on a Spherical Surface

Click For Summary

Discussion Overview

The discussion revolves around calculating the flux of a vector field across a spherical surface in the first octant. Participants explore different approaches to the problem, including the use of spherical coordinates and Gauss's divergence theorem, while addressing potential errors in calculations and assumptions about the surface involved.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the vector field $\overrightarrow{F}=zx \hat{i}+zy \hat{j}+z^2 \hat{k}$ and seeks guidance on continuing the flux calculation.
  • Another participant questions which vector field is being integrated, suggesting the use of cylindrical or spherical coordinates for the flux calculation.
  • There is a suggestion to apply Gauss's divergence theorem, with a clarification that the surface is not closed unless the coordinate planes are included.
  • Participants discuss the conversion of the vector field into spherical coordinates and the appropriate integration limits for the first octant.
  • Concerns are raised about missing factors in the surface element when transitioning to spherical coordinates, specifically the inclusion of $a^2 \sin{\phi}$.
  • One participant proposes an alternative method using the local spherical basis to simplify the dot product calculation.
  • There is an ongoing uncertainty regarding the correctness of the calculations presented, with participants seeking confirmation of their methods and results.

Areas of Agreement / Disagreement

Participants express uncertainty and disagreement regarding the correct application of spherical coordinates, the use of Gauss's theorem, and the proper limits for integration. No consensus is reached on the final approach or correctness of calculations.

Contextual Notes

Participants note limitations in the integration setup, including the need to account for the surface element in spherical coordinates and the correct interpretation of the surface as closed or open based on included coordinate planes.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello again! :)
I am given the following exercise:
Find the flux of the vector field $\overrightarrow{F}=zx \hat{i}+ zy \hat{j}+z^2 \hat{k}$ of the surface that consists of the first octant of the sphere $x^2+y^2+z^2=a^2(x,y,z \geq 0).$

That's what I did so far:

$\hat{n}=\frac{\nabla{G}}{| \nabla{G} |}=\frac{x \hat{i}+ y\hat{j}+ z\hat{k}}{a}$

Flux=$\int_C{\overrightarrow{F} \cdot \hat{n}}ds=\int_C{(zx \hat{i}+zy \hat{j}+z^2 \hat{k}) \frac{x \hat{i}+y \hat{j} +z \hat{k}}{a}}ds=\int_C{\frac{zx^2+zy^2+z^3}{a}}ds$

How can I continue? Do I have to use spherical coordinates? Or can I solve this with these coordinates? :confused:
 
Last edited:
Physics news on Phys.org
evinda said:
Hello again! :)
I am given the following exercise:
Find the flux of the vector field $\overrightarrow{F}=-y \hat{i}+ x \hat{j}$ of the surface that consists of the first octant of the sphere $x^2+y^2+z^2=a^2(x,y,z \geq 0).$

That's what I did so far:

$\hat{n}=\frac{\nabla{G}}{| \nabla{G} |}=\frac{x \hat{i}+ y\hat{j}+ z\hat{k}}{a}$

Flux=$\int_C{\overrightarrow{F} \cdot \hat{n}}ds=\int_C{(zx \hat{i}+zy \hat{j}+z^2 \hat{k}) \frac{x \hat{i}+y \hat{j} +z \hat{k}}{a}}ds=\int_C{\frac{zx^2+zy^2+z^3}{a}}ds$

How can I continue? Do I have to use spherical coordinates? Or can I solve this with these coordinates? :confused:

Hi! :rolleyes:

Which $\overrightarrow{F}$ are you supposed to integrate?

Is it $\overrightarrow{F}=-y \hat{i}+ x \hat{j}$, or $\overrightarrow{F}=zx \hat{i}+zy \hat{j}+z^2 \hat{k}$?

In the first case, you can use the $\overrightarrow{F} = -\rho \mathbf{\hat \phi}$ in cylindrical coordinates.
Or $\overrightarrow{F} = -r \sin \theta \mathbf{\hat \phi}$ in spherical coordinates.

A good alternative is to apply Gauss's divergence theorem.
You will have to compensate for the coordinate planes (assuming they are not included), but they are easy to integrate.
 
I like Serena said:
Hi! :rolleyes:

Which $\overrightarrow{F}$ are you supposed to integrate?

Is it $\overrightarrow{F}=-y \hat{i}+ x \hat{j}$, or $\overrightarrow{F}=zx \hat{i}+zy \hat{j}+z^2 \hat{k}$?

In the first case, you can use the $\overrightarrow{F} = -\rho \mathbf{\hat \phi}$ in cylindrical coordinates.
Or $\overrightarrow{F} = -r \sin \theta \mathbf{\hat \phi}$ in spherical coordinates.

A good alternative is to apply Gauss's divergence theorem.
You will have to compensate for the coordinate planes (assuming they are not included), but they are easy to integrate.

Oh,sorry! :o I accidentally wrote the vector field of an other exercise..I meant this vector field: $\overrightarrow{F}=zx \hat{i}+zy \hat{j}+z^2 \hat{k}$ !
Why can I apply the Gauss's divergence theorem?? Is it a closed path??
 
evinda said:
Oh,sorry! :o I accidentally wrote the vector field of an other exercise..I meant this vector field: $\overrightarrow{F}=zx \hat{i}+zy \hat{j}+z^2 \hat{k}$ !

Now that I'm looking a bit better, I can see that $\overrightarrow{F}$ can be written in spherical form fairly easily.
Can you find it?

So a spherical integration seems appropriate.
Why can I apply the Gauss's divergence theorem?? Is it a closed path??

Well, you wrote an integral on a path, but apparently you are supposed to integrate over a surface.

And no, it is not a closed surface, but if you include the coordinate planes, it is a closed surface. Afterward you will have to subtract the integrations over the coordinate planes.

For reference, Gauss's divergence theorem is:
$$\bigcirc\!\!\!\!\!\!\!\!\iint_S \mathbf F \cdot \mathbf{\hat n}dS = \iiint_V \nabla \cdot \mathbf F dV$$
 
I like Serena said:
Now that I'm looking a bit better, I can see that $\overrightarrow{F}$ can be written in spherical form fairly easily.
Can you find it?

So a spherical integration seems appropriate.

Well, you wrote an integral on a path, but apparently you are supposed to integrate over a surface.

And no, it is not a closed surface, but if you include the coordinate planes, it is a closed surface. Afterward you will have to subtract the integrations over the coordinate planes.

For reference, Gauss's divergence theorem is:
$$\bigcirc\!\!\!\!\!\!\!\!\iint_S \mathbf F \cdot \mathbf{\hat n}dS = \iiint_V \nabla \cdot \mathbf F dV$$

The spherical coordinates are:
$x=a \cos{\theta} \sin{\phi}$
$y=a \sin{\theta} \sin{\phi}$
$z=a \cos{\phi}$
$0 \leq \theta \leq \frac{\pi}{4}$
$0 \leq \phi \leq \frac{\pi}{4}$

So $\overrightarrow{F}=a^2 \cos{\theta} \sin{\phi}\cos{\phi}\hat{i}+a^2\sin{\theta} \sin{\phi}\cos{\phi}\hat{j}+a^2\cos^2{\phi}\hat{k}$.

$\hat{n}=\frac{a \cos{\theta} \sin{\phi} \hat{i}+a \sin{\theta} \sin{\phi} \hat{j}+a \cos{\phi} \hat{k}}{a}=\cos{\theta} \sin{\phi} \hat{i}+ \sin{\theta} \sin{\phi} \hat{j}+ \cos{\phi} \hat{k}$

Flux=$\int_C{\overrightarrow{F} \cdot \hat{n}}ds=\int_C{(a^2\cos^2\theta \sin^2{\phi}\cos{\phi}+a^2\sin^2{\theta} \sin^2{\phi}\cos{\phi}+a^2\cos^3{\phi})}d\theta d\phi=\int_0^{\frac{\pi}{4}}\int_0^{\frac{\pi}{4}}{a^2\cos{\phi}}d\theta d\phi=\int_0^{\frac{\pi}{4}}{\frac{\pi}{4}a^2\cos{\phi} d \phi}=\frac{\pi}{4}a^2\frac{\sqrt{2}}{2}$

I hope that the calculations are right...

But..is that what I did correct or have I done something wrong?? (Thinking)
 
evinda said:
The spherical coordinates are:
$x=a \cos{\theta} \sin{\phi}$
$y=a \sin{\theta} \sin{\phi}$
$z=a \cos{\phi}$
$0 \leq \theta \leq \frac{\pi}{4}$
$0 \leq \phi \leq \frac{\pi}{4}$

So $\overrightarrow{F}=a^2 \cos{\theta} \sin{\phi}\cos{\phi}\hat{i}+a^2\sin{\theta} \sin{\phi}\cos{\phi}\hat{j}+a^2\cos^2{\phi}\hat{k}$.

$\hat{n}=\frac{a \cos{\theta} \sin{\phi} \hat{i}+a \sin{\theta} \sin{\phi} \hat{j}+a \cos{\phi} \hat{k}}{a}=\cos{\theta} \sin{\phi} \hat{i}+ \sin{\theta} \sin{\phi} \hat{j}+ \cos{\phi} \hat{k}$

Flux=$\int_C{\overrightarrow{F} \cdot \hat{n}}ds=\int_C{(a^2\cos^2\theta \sin^2{\phi}\cos{\phi}+a^2\sin^2{\theta} \sin^2{\phi}\cos{\phi}+a^2\cos^3{\phi})}d\theta d\phi=\int_0^{\frac{\pi}{4}}\int_0^{\frac{\pi}{4}}{a^2\cos{\phi}}d\theta d\phi=\int_0^{\frac{\pi}{4}}{\frac{\pi}{4}a^2\cos{\phi} d \phi}=\frac{\pi}{4}a^2\frac{\sqrt{2}}{2}$

I hope that the calculations are right...

But..is that what I did correct or have I done something wrong?? (Thinking)

Almost.

Your calculation of $\mathbf F \cdot \mathbf{\hat n}$ is correct.

But in spherical coordinates the surface element $ds = r^2\sin\phi d\theta d\phi = a^2\sin\phi d\theta d\phi$.
(Formally: the absolute value of the Jacobian is $r^2\sin\phi $.)
You have left out this factor $a^2\sin\phi$.

Oh, and the angle limits of an octant are $\frac \pi 2$ instead of $\frac \pi 4$.
Btw, an easier calculation of the dot product is by using the local spherical basis $(\mathbf{\hat r}, \mathbf{\hat \phi}, \mathbf{\hat \theta})$:
$$\mathbf F = z(x\mathbf{\hat i} + y\mathbf{\hat j} + z\mathbf{\hat k}) = zr\mathbf{\hat r}$$
$$\mathbf{\hat n} = \mathbf{\hat r}$$
Therefore:
$$\mathbf F \cdot \mathbf{\hat n} = zr\mathbf{\hat r} \cdot \mathbf{\hat r} = zr = r\cos\phi \cdot r = a^2 \cos\phi$$
 
I like Serena said:
Almost.

Your calculation of $\mathbf F \cdot \mathbf{\hat n}$ is correct.

But in spherical coordinates the surface element $ds = r^2\sin\phi d\theta d\phi = a^2\sin\phi d\theta d\phi$.
(Formally: the absolute value of the Jacobian is $r^2\sin\phi $.)
You have left out this factor $a^2\sin\phi$.

Oh, and the angle limits of an octant are $\frac \pi 2$ instead of $\frac \pi 4$.
Btw, an easier calculation of the dot product is by using the local spherical basis $(\mathbf{\hat r}, \mathbf{\hat \phi}, \mathbf{\hat \theta})$:
$$\mathbf F = z(x\mathbf{\hat i} + y\mathbf{\hat j} + z\mathbf{\hat k}) = zr\mathbf{\hat r}$$
$$\mathbf{\hat n} = \mathbf{\hat r}$$
Therefore:
$$\mathbf F \cdot \mathbf{\hat n} = zr\mathbf{\hat r} \cdot \mathbf{\hat r} = zr = r\cos\phi \cdot r = a^2 \cos\phi$$

A ok.. :o So is it like that?

Flux=$\int_C{\overrightarrow{F} \cdot \hat{n}}ds=\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}}{(a^2 \cos^2{\theta} \sin^2{\phi} \cos{\phi}+a^2 \sin^2{\theta}\sin^2{\phi}\cos{\phi}+a^2 \cos^3{\phi})a^2 \sin{\theta}}d \theta d \phi=\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}}{a^4 \cos{\phi} \sin{\theta}}d \theta d \phi=\int_0^{\frac{\pi}{2}}{a^4 \cos{\phi}}d\phi=a^4$
 
evinda said:
A ok.. :o So is it like that?

Flux=$\int_C{\overrightarrow{F} \cdot \hat{n}}ds=\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}}{(a^2 \cos^2{\theta} \sin^2{\phi} \cos{\phi}+a^2 \sin^2{\theta}\sin^2{\phi}\cos{\phi}+a^2 \cos^3{\phi})a^2 \sin{\theta}}d \theta d \phi=\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}}{a^4 \cos{\phi} \sin{\theta}}d \theta d \phi=\int_0^{\frac{\pi}{2}}{a^4 \cos{\phi}}d\phi=a^4$

Almost.

You appear to have chosen $\phi$ as the angle with the z-axis (which surprises me actually, but conventions vary).
With that choice the extra factor must be $a^2\sin\phi$ instead of $a^2\sin\theta$. :eek:
 
I like Serena said:
Almost.

You appear to have chosen $\phi$ as the angle with the z-axis (which surprises me actually, but conventions vary).
With that choice the extra factor must be $a^2\sin\phi$ instead of $a^2\sin\theta$. :eek:

I changed this:
Flux=$\int_C{\overrightarrow{F} \cdot \hat{n}}ds=\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}}{(a^2 \cos^2{\theta} \sin^2{\phi} \cos{\phi}+a^2 \sin^2{\theta}\sin^2{\phi}\cos{\phi}+a^2 \cos^3{\phi})a^2 \sin{\phi}}d \theta d \phi=\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}}{a^4 \cos{\phi} \sin{\phi}}d \theta d \phi=\int_0^{\frac{\pi}{2}}{a^4 \frac{\pi}{2}\cos{\phi} \sin{\phi}}d\phi=a^4\frac{\pi}{4}$

Is it right now or have I done something wrong? :o
 
  • #10
evinda said:
I changed this:
Flux=$\int_C{\overrightarrow{F} \cdot \hat{n}}ds=\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}}{(a^2 \cos^2{\theta} \sin^2{\phi} \cos{\phi}+a^2 \sin^2{\theta}\sin^2{\phi}\cos{\phi}+a^2 \cos^3{\phi})a^2 \sin{\phi}}d \theta d \phi=\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}}{a^4 \cos{\phi} \sin{\phi}}d \theta d \phi=\int_0^{\frac{\pi}{2}}{a^4 \frac{\pi}{2}\cos{\phi} \sin{\phi}}d\phi=a^4\frac{\pi}{4}$

Is it right now or have I done something wrong? :o

It is right now! (Wink)
 
  • #11
I like Serena said:
It is right now! (Wink)

Nice..thank you very much! :rolleyes:
 
  • #12
I like Serena said:
It is right now! (Wink)

I am looking again at the exercise... Is it maybe like that:

$$ds= \frac{|\nabla{f}|}{|\nabla{f} \cdot \hat{k}|}$$

? Or am I wrong? :confused: (Blush)

I found that $\displaystyle{ \frac{|\nabla{f}|}{|\nabla{f} \cdot \hat{k}|}=\frac{a}{z}}$..
 
  • #13
evinda said:
I am looking again at the exercise... Is it maybe like that:

$$ds= \frac{|\nabla{f}|}{|\nabla{f} \cdot \hat{k}|}$$

? Or am I wrong? :confused: (Blush)

I found that $\displaystyle{ \frac{|\nabla{f}|}{|\nabla{f} \cdot \hat{k}|}=\frac{a}{z}}$..

What you write is correct, but I don't quite see how you might solve the problem with it.

I think you are referring to the formula:
$$\iint g(\overrightarrow R)d\sigma = \iint g(\overrightarrow R) \frac{|\nabla{f}|}{|\nabla{f} \cdot \hat{k}|}dA$$
But this formula only works for integrating a scalar function $g(\overrightarrow R)$ over a surface given by $f(\overrightarrow R)=0$.

Instead, in this problem, a vector function has to be integrated. (Doh)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K