Determine if the vector field is conservative or not

In summary: So unfortunately, the answer is no, this vector field is not conservative. :(In summary, the vector field $\overrightarrow{F}=y\hat{i}+(x+z)\hat{j}-y\hat{k}$ is not conservative. It does not satisfy the condition for conservative vector fields, and there does not exist a scalar field $f$ such that $\overrightarrow{F}=\nabla f$. Additionally, the vector field is not irrotational as its curl is not equal to zero. Therefore, we can conclude that the vector field is not conservative nor irrotational.
  • #1
mathmari
Gold Member
MHB
5,049
7
Hey! :eek:

Determine if the vector field $\overrightarrow{F}=y\hat{i}+(x+z)\hat{j}-y\hat{k}$ is conservative or not.The vector field $\overrightarrow{F}=M\hat{i}+N\hat{j}+P\hat{k}$ is conservative if $$\frac{\partial{M}}{\partial{y}}=\frac{\partial{N}}{\partial{x}}, \frac{\partial{M}}{\partial{z}}=\frac{\partial{P}}{\partial{x}}, \frac{\partial{N}}{\partial{z}}=\frac{\partial{P}}{\partial{y}}$$

In this case:
$$\frac{\partial{M}}{\partial{y}}=1=\frac{\partial{N}}{\partial{x}}, \frac{\partial{M}}{\partial{z}}=0=\frac{\partial{P}}{\partial{x}}, \frac{\partial{N}}{\partial{z}}=1 \neq \frac{\partial{P}}{\partial{y}}=-1$$

Does this mean that the vector field is not conservative? Is it a ~if and only if~ condition?
 
Physics news on Phys.org
  • #2
Or does this only mean that we cannot conclude by using this formula that the vector field is conservative? So we don't know if it is conservative?
 
  • #3
mathmari said:
Hey! :eek:

Determine if the vector field $\overrightarrow{F}=y\hat{i}+(x+z)\hat{j}-y\hat{k}$ is conservative or not.The vector field $\overrightarrow{F}=M\hat{i}+N\hat{j}+P\hat{k}$ is conservative if $$\frac{\partial{M}}{\partial{y}}=\frac{\partial{N}}{\partial{x}}, \frac{\partial{M}}{\partial{z}}=\frac{\partial{P}}{\partial{x}}, \frac{\partial{N}}{\partial{z}}=\frac{\partial{P}}{\partial{y}}$$

In this case:
$$\frac{\partial{M}}{\partial{y}}=1=\frac{\partial{N}}{\partial{x}}, \frac{\partial{M}}{\partial{z}}=0=\frac{\partial{P}}{\partial{x}}, \frac{\partial{N}}{\partial{z}}=1 \neq \frac{\partial{P}}{\partial{y}}=-1$$

Does this mean that the vector field is not conservative? Is it a ~if and only if~ condition?

Hi! :DFirst note that your condition is equivalent to $\nabla\times\overrightarrow{F} = \mathbf{0}$.From wikipedia:

A vector field $\mathbf{v}$ is said to be conservative if there exists a scalar field $\varphi$ such that
$$\mathbf{v}=\nabla\varphi$$
A vector field $\mathbf{v}$ is said to be irrotational if its curl is zero. That is, if
$$\nabla\times\mathbf{v} = \mathbf{0}$$
Therefore every conservative vector field is also an irrotational vector field.

Suppose that $S\subseteq\mathbb{R}^3$ is a region of three-dimensional space where $\mathbf{v}$ is defined.
Provided that $S$ is a simply connected region, the converse of this is true: every irrotational vector field is also a conservative vector field.
The above statement is not true if $S$ is not simply connected.

Can you deduce an answer from that? :eek:
 
  • #4
I like Serena said:
Hi! :DFirst note that your condition is equivalent to $\nabla\times\overrightarrow{F} = \mathbf{0}$.From wikipedia:

A vector field $\mathbf{v}$ is said to be conservative if there exists a scalar field $\varphi$ such that
$$\mathbf{v}=\nabla\varphi$$
A vector field $\mathbf{v}$ is said to be irrotational if its curl is zero. That is, if
$$\nabla\times\mathbf{v} = \mathbf{0}$$
Therefore every conservative vector field is also an irrotational vector field.

Suppose that $S\subseteq\mathbb{R}^3$ is a region of three-dimensional space where $\mathbf{v}$ is defined.
Provided that $S$ is a simply connected region, the converse of this is true: every irrotational vector field is also a conservative vector field.
The above statement is not true if $S$ is not simply connected.

Can you deduce an answer from that? :eek:

So the vectorfield $\overrightarrow{F}$ is not irrotational since $\nabla \times \overrightarrow{F} \neq 0$, is it?

The other condition, to find a $f$ such that $\overrightarrow{F}=\nabla f$ is as followed:
$$\overrightarrow{F}=\nabla f=\frac{\partial{f}}{\partial{x}}\hat{i}+\frac{ \partial{f}}{\partial{y}}\hat{j}+\frac{\partial{f}}{\partial{z}}\hat{k}$$
$$\frac{\partial{f}}{\partial{x}}=y \Rightarrow f=yx+g(y,z)$$
$$\frac{\partial{f}}{\partial{y}}=x+\frac{\partial{g}}{\partial{y}}=x+z \Rightarrow \frac{\partial{g}}{\partial{y}}=z \Rightarrow g(y,z)=yz+h(z)$$
$$f=yx+yz+h(z)$$
$$\frac{\partial{f}}{\partial{z}}=y+h'(z)=-y \Rightarrow h'(z)=-2y \Rightarrow h(z)-2yz+c$$
So $f=yx+yz-2yz+c \Rightarrow f=yx-yz+c$.

So since there exists such a $f$, does this mean that the vectorfield $\overrightarrow{F}$ is conservative?
 
  • #5
Let me first respond on your original post.

mathmari said:
The vector field $\overrightarrow{F}=M\hat{i}+N\hat{j}+P\hat{k}$ is conservative if $$\frac{\partial{M}}{\partial{y}}=\frac{\partial{N}}{\partial{x}}, \frac{\partial{M}}{\partial{z}}=\frac{\partial{P}}{\partial{x}}, \frac{\partial{N}}{\partial{z}}=\frac{\partial{P}}{\partial{y}}$$

Does this mean that the vector field is not conservative? Is it a ~if and only if~ condition?

From the wikipedia definition, it should be clear that this is not the definition of a conservative field. (I am wondering if it was intended to be...?) It is similar, but there are special cases that are not covered by this statement.
However, if we're only looking at vector fields that are differentiable on $\mathbb R^3$, the definitions are equivalent. Within that context it is an if-and-only-if.

So indeed, no, the vector field is not conservative.
mathmari said:
So the vectorfield $\overrightarrow{F}$ is not irrotational since $\nabla \times \overrightarrow{F} \neq 0$, is it?

The other condition, to find a $f$ such that $\overrightarrow{F}=\nabla f$ is as followed:
$$\overrightarrow{F}=\nabla f=\frac{\partial{f}}{\partial{x}}\hat{i}+\frac{ \partial{f}}{\partial{y}}\hat{j}+\frac{\partial{f}}{\partial{z}}\hat{k}$$
$$\frac{\partial{f}}{\partial{x}}=y \Rightarrow f=yx+g(y,z)$$
$$\frac{\partial{f}}{\partial{y}}=x+\frac{\partial{g}}{\partial{y}}=x+z \Rightarrow \frac{\partial{g}}{\partial{y}}=z \Rightarrow g(y,z)=yz+h(z)$$
$$f=yx+yz+h(z)$$
$$\frac{\partial{f}}{\partial{z}}=y+h'(z)=-y \Rightarrow h'(z)=-2y \Rightarrow h(z)-2yz+c$$
So $f=yx+yz-2yz+c \Rightarrow f=yx-yz+c$.

So since there exists such a $f$, does this mean that the vectorfield $\overrightarrow{F}$ is conservative?

Looks like a good approach! ;)
But... let's verify.

With $f=yx-yz+c$ we have:
$$\nabla f = y \hat\imath + (x-z)\hat \jmath -y \hat k$$
Hey! That is not equal to the original $\overrightarrow F$ we had! :eek:
 
  • #6
I like Serena said:
From the wikipedia definition, it should be clear that this is not the definition of a conservative field. (I am wondering if it was intended to be...?) It is similar, but there are special cases that are not covered by this statement.
There is a theorem:
Let $M(x,y,z), N(x,y,z), P(x,y,z)$ and their first partial derivatives be continuous functions, then a necessary condition so that the vectorfield $\overrightarrow{F}$ is conservative is that the following equations are satisfied:
$$\frac{\partial{M}}{\partial{y}}=\frac{\partial{N}}{\partial{x}}, \frac{\partial{M}}{\partial{z}}=\frac{\partial{P}}{\partial{x}}, \frac{\partial{N}}{\partial{z}}=\frac{\partial{P}}{\partial{y}}$$

That means that if these equations are satisfied, the vectorfield is conservative.
If these equations are not satisfied, as in this case, we cannot say that the vectorfield is conservative or not.

So we use the other condition, right?
$$\overrightarrow{F} \text{ conservative } \Leftrightarrow \overrightarrow{F}=\nabla f$$

I like Serena said:
Looks like a good approach! ;)
But... let's verify.

With $f=yx-yz+c$ we have:
$$\nabla f = y \hat\imath + (x-z)\hat \jmath -y \hat k$$
Hey! That is not equal to the original $\overrightarrow F$ we had! :eek:

A ok!
 
  • #7
mathmari said:
There is a theorem:
Let $M(x,y,z), N(x,y,z), P(x,y,z)$ and their first partial derivatives be continuous functions, then a necessary condition so that the vectorfield $\overrightarrow{F}$ is conservative is that the following equations are satisfied:
$$\frac{\partial{M}}{\partial{y}}=\frac{\partial{N}}{\partial{x}}, \frac{\partial{M}}{\partial{z}}=\frac{\partial{P}}{\partial{x}}, \frac{\partial{N}}{\partial{z}}=\frac{\partial{P}}{\partial{y}}$$

That means that if these equations are satisfied, the vectorfield is conservative.
If these equations are not satisfied, as in this case, we cannot say that the vectorfield is conservative or not.

So we use the other condition, right?
$$\overrightarrow{F} \text{ conservative } \Leftrightarrow \overrightarrow{F}=\nabla f$$

Ah okay. So it was "only" a theorem (with additional conditions involved) and not a definition.

There is also another theorem that says that if a field is conservative, it has to be irrotational (the converse).
Or in other words, if it is it not irrotational, it is not conservative.

Anyway, yeah, going back to the definition is always a good way to go! ;)
 
  • #8
I like Serena said:
Ah okay. So it was "only" a theorem (with additional conditions involved) and not a definition.

There is also another theorem that says that if a field is conservative, it has to be irrotational (the converse).
Or in other words, if it is it not irrotational, it is not conservative.

Anyway, yeah, going back to the definition is always a good way to go! ;)

Ok! Thank you very much for your help! (Smile)
 

Related to Determine if the vector field is conservative or not

1. What is a vector field?

A vector field is a mathematical function that assigns a vector to each point in a given space. These vectors can represent physical quantities such as velocity or force, and can also be used to represent abstract concepts in mathematics.

2. What does it mean for a vector field to be conservative?

A conservative vector field is one in which the line integral between any two points is independent of the path taken between them. In other words, the work done by the vector field along any closed loop is equal to zero.

3. How can I determine if a vector field is conservative?

One method is to calculate the curl of the vector field. If the curl is equal to zero, then the vector field is conservative. Another method is to check if the vector field satisfies the gradient theorem, which states that a vector field is conservative if it can be expressed as the gradient of a scalar function.

4. Why is it important to determine if a vector field is conservative?

Determining if a vector field is conservative can help in solving problems related to physical phenomena, such as calculating work or potential energy. It can also help in simplifying mathematical calculations and making predictions about the behavior of the vector field.

5. Can a vector field be partially conservative?

Yes, a vector field can be partially conservative. This means that it is conservative in some parts of the space, but not in others. In this case, the line integral will still be path-independent in the conservative regions, but not in the non-conservative regions.

Similar threads

Replies
5
Views
620
Replies
3
Views
1K
Replies
1
Views
2K
Replies
6
Views
975
Replies
3
Views
1K
Replies
17
Views
2K
Replies
6
Views
1K
  • Calculus
Replies
1
Views
1K
  • Special and General Relativity
Replies
14
Views
855
Back
Top