Calculating Fourier Series of $f(\theta)$ on $[\pi, -\pi]$

Click For Summary

Discussion Overview

The discussion revolves around calculating the Fourier series of a piecewise-defined function \( f(\theta) \) on the interval \([\pi, -\pi]\). Participants explore the properties of the function, its periodicity, and the implications of its odd symmetry, while addressing the integration needed to find the Fourier coefficients.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory
  • Homework-related

Main Points Raised

  • Post 1 introduces the function \( f(\theta) \) and notes its periodicity and odd symmetry, stating that \( f(-\theta) = -f(\theta) \).
  • Post 2 presents the formula for the Fourier coefficients \( a_n \) and suggests breaking the integral into two parts due to the piecewise definition of \( f(\theta) \).
  • Post 3 reiterates the approach to calculating \( a_n \) and confirms the method of integrating over the defined intervals.
  • Post 4 emphasizes the potential advantage of using the real Fourier series, noting that cosine terms will be zero and only sine terms will remain.
  • Post 5 discusses the evaluation of integrals involving sine functions and presents a case analysis based on whether \( m \) is even or odd.
  • A later reply provides a detailed evaluation of the integral from \( 0 \) to \( \pi \) and suggests a final form for the Fourier series based on the results of the integrals.

Areas of Agreement / Disagreement

Participants generally agree on the approach to calculating the Fourier coefficients and the use of piecewise integration. There is a consensus on the odd nature of the function, but the discussion includes varying interpretations of the integral evaluations, particularly regarding the sine terms.

Contextual Notes

Some participants express uncertainty about the integral evaluations, particularly in distinguishing between cases for even and odd \( m \). There are also unresolved steps in the integration process that may affect the final series representation.

Who May Find This Useful

This discussion may be useful for students and practitioners interested in Fourier analysis, particularly those dealing with piecewise functions and the implications of symmetry in Fourier series calculations.

Dustinsfl
Messages
2,217
Reaction score
5
Calculate the Fourier series of the function $f$ defined on the interval $[\pi, -\pi]$ by
$$
f(\theta) =
\begin{cases} 1 & \text{if} \ 0\leq\theta\leq\pi\\
-1 & \text{if} \ -\pi < \theta < 0
\end{cases}.
$$
$f$ is periodic with period $2\pi$ and odd since $f$ is symmetric about the origin.
So $f(-\theta) = -f(\theta)$.
Let $f(\theta) = \sum\limits_{n = -\infty}^{\infty}a_ne^{in\theta}$.
Then $f(-\theta) = \sum\limits_{n = -\infty}^{\infty}a_ne^{-in\theta} = \cdots + a_{-2}e^{2i\theta} + a_{-1}e^{i\theta} + a_0 + a_{1}e^{-i\theta} + a_{2}e^{-2i\theta}+\cdots$
$-f(\theta) = \sum\limits_{n = -\infty}^{\infty}a_ne^{-in\theta} = \cdots - a_{-2}e^{-2i\theta} - a_{-1}e^{-i\theta} - a_0 - a_{1}e^{i\theta} - a_{2}e^{2i\theta}-\cdots$

$a_0 = -a_0 = 0$

I have solved many Fourier coefficients but I can't think today.

What do I need to do next?
 
Physics news on Phys.org
$$
a_n = \frac{1}{2\pi}\int_{-\pi}^{\pi}f(\theta)e^{-im\theta}d\theta
$$
Since my function is defined piecewise, would I write it as
$$
a_n = \frac{1}{2\pi}\left[\int_0^{\pi}e^{-im\theta}d\theta - \int_{-\pi}^0e^{-im\theta}d\theta\right]
$$
 
dwsmith said:
$$
a_n = \frac{1}{2\pi}\int_{-\pi}^{\pi}f(\theta)e^{-im\theta}d\theta
$$
Since my function is defined piecewise, would I write it as
$$
a_n = \frac{1}{2\pi}\left[\int_0^{\pi}e^{-im\theta}d\theta - \int_{-\pi}^0e^{-im\theta}d\theta\right]
$$
Yes. (Yes)

(But since this is an odd function, you might find it easier to use the real rather than the complex Fourier series. The cosine terms will all be zero and you will only have to deal with the sine terms. To evaluate them, do just what you are doing with the complex terms, writing them as the difference between the integrals on the intervals [0,1] and [-1,0].)
 
Opalg said:
Yes. (Yes)

(But since this is an odd function, you might find it easier to use the real rather than the complex Fourier series. The cosine terms will all be zero and you will only have to deal with the sine terms. To evaluate them, do just what you are doing with the complex terms, writing them as the difference between the integrals on the intervals [0,1] and [-1,0].)
When I solve, I have
$$
-\frac{1}{2\pi}\int_0^{\pi}\sin m\theta d\theta = \frac{1}{\pi m}
$$
and
$$
-\frac{1}{2\pi}\int_{-\pi}^0\sin m\theta d\theta = -\frac{1}{\pi m}
$$

I think the integral has to be
$$
-\frac{1}{\pi}\int_0^{\pi}\sin m\theta d\theta = \frac{2}{\pi m}
$$

Now what?
 
Last edited:
dwsmith said:
When I solve, I have
$$
-\frac{1}{2\pi}\int_0^{\pi}\sin m\theta d\theta = \frac{1}{\pi m}
$$
and
$$
-\frac{1}{2\pi}\int_{-\pi}^0\sin m\theta d\theta = -\frac{1}{\pi m}
$$

I think the integral has to be
$$
-\frac{1}{\pi}\int_0^{\pi}\sin m\theta d\theta = \frac{2}{\pi m}
$$

Now what?
Try doing those integrals again. $$\begin{aligned}\int_0^\pi\sin m\theta\,d\theta &=\Bigl[-\tfrac1m\cos m\theta\Bigr]_0^\pi \\ &= -\tfrac1m\bigl(\cos m\pi - \cos 0\bigr) \\ &= -\tfrac1m\bigl((-1)^m - 1\bigr) \\ &= \begin{cases}0 &\text{ (if $m$ is even),} \\2/m &\text{ (if $m$ is odd).}\end{cases} \end{aligned}$$

The integral from -1 to 0 is the same but with a minus sign. You should then find that the Fourier series for $f(\theta)$ is $$\sum_{k=0}^\infty\frac4{(2k+1)\pi}\sin(2k+1) \theta.$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K