Graduate Calculating Hessian of f(x)^TQy: What Can We Conclude?

  • Thread starter Thread starter perplexabot
  • Start date Start date
  • Tags Tags
    Hessian
Click For Summary
The discussion centers on the implications of the equation ∇_x∇_x^T f(x)^T Qy = 0 for the function f(x). It is concluded that while the Hessian matrices associated with f(x) may be singular, they are not necessarily zero, indicating that f(x) can exhibit curvature and is not strictly linear. The role of Q and y remains ambiguous, but the interpretation suggests that the equation holds for all y and Q. The analysis leads to the understanding that there are constraints within the curvature of f(x). Overall, the findings suggest a nuanced relationship between the function's behavior and its Hessian properties.
perplexabot
Gold Member
Messages
328
Reaction score
5
Hey all. Let me just get right to it! Assume you have a function f:\mathbb{R}^n\rightarrow\mathbb{R}^m and we know nothing else except the following equation:
\triangledown_x\triangledown_x^Tf(x)^TQy=0
where \triangledown_x is the gradient with respect to vector x (outer product of two gradient operators is the hessian operator). Also let the dimensions of Q and y conform.

Using the information provided above what can you conclude about f(x) (if anything)? Can you infer that f(x) is linear?

Thank you : )
 
Physics news on Phys.org
The role of ##Q## and ##y## in this equation is unclear. The most natural interpretation, which I will adopt, pending clarification, is that the equation is implicitly prefixed by ##\forall y## and ##\forall Q##. If so then the equation is equivalent to the simpler equation (writing ##u## for ##Qy##):

$$\forall u:\ H \langle f(x),u\rangle=0$$
where ##H## denotes the Hessian operator.

This in turn can be written:
$$\forall u\forall i:\ \sum_j\sum_k u_k\frac{\partial}{\partial x_i\partial x_j}f_k(x)=0$$

By letting ##u## be each of the basis vectors in turn, we can get:
$$\forall i\forall k:\ \sum_j\frac{\partial}{\partial x_i\partial x_j}f_k(x)=0$$

Note that there are ##m## separate Hessian matrices involved here, indexed by ##k## in this formula. The formula tells us that, in each such matrix, all row sums are zero. I think that will make each Hessian singular, but they need not be zero. For instance we could have a Hessian ##\pmatrix{1&-1\\-1&1}##.

So there can still be curvature (ie ##f## is not necessarily linear) but there would be some sort of constraining relationship within that curvature.
 
  • Like
Likes perplexabot
andrewkirk said:
The role of ##Q## and ##y## in this equation is unclear. The most natural interpretation, which I will adopt, pending clarification, is that the equation is implicitly prefixed by ##\forall y## and ##\forall Q##. If so then the equation is equivalent to the simpler equation (writing ##u## for ##Qy##):

$$\forall u:\ H \langle f(x),u\rangle=0$$
where ##H## denotes the Hessian operator.

This in turn can be written:
$$\forall u\forall i:\ \sum_j\sum_k u_k\frac{\partial}{\partial x_i\partial x_j}f_k(x)=0$$

By letting ##u## be each of the basis vectors in turn, we can get:
$$\forall i\forall k:\ \sum_j\frac{\partial}{\partial x_i\partial x_j}f_k(x)=0$$

Note that there are ##m## separate Hessian matrices involved here, indexed by ##k## in this formula. The formula tells us that, in each such matrix, all row sums are zero. I think that will make each Hessian singular, but they need not be zero. For instance we could have a Hessian ##\pmatrix{1&-1\\-1&1}##.

So there can still be curvature (ie ##f## is not necessarily linear) but there would be some sort of constraining relationship within that curvature.
Hmmm. I find your post interesting. I do not understand how you achieved your equations. Maybe my question was badly worded, or maybe I have truncated too much information from the question. Your final answer, f not necessarily being linear, is what I also think. Would it be wise to link or post the paper of which my question stems from? It has something to do with taking the hessian of the log of a multivariate normal distribution.

Thank you for your help : )
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K