MHB Calculating Numbers with Common Factors: A Scientific Approach

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Numbers
Click For Summary
The discussion revolves around calculating how many numbers \( k \) between 1 and 3600 share a common factor greater than 1 with 3600. The proposed solution involves using Euler's totient function \( \phi(3600) \) to find the count of coprime numbers. The calculation confirms that there are 2640 such numbers, derived from the formula \( 3600 - \phi(3600) \). Participants affirm the correctness of this approach and solution. The exercise effectively demonstrates the application of number theory in determining common factors.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at the following exercise:

Find how many numbers $k$ with $1 \leq k \leq 3600$ exist,that have at least one common factor $>1$ with $3600$.

I thought that the number we are looking for is equal to:
$$3600-\phi(3600)=3600-\phi(2^4 \cdot 3^2 \cdot 5^2 )=3600-3600(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{5})=3600 \cdot \frac{11}{15}=2640$$

Could you tell me if it is right? (Thinking) (Nerd)
 
Mathematics news on Phys.org
evinda said:
Hello! (Wave)

I am looking at the following exercise:

Find how many numbers $k$ with $1 \leq k \leq 3600$ exist,that have at least one common factor $>1$ with $3600$.

I thought that the number we are looking for is equal to:
$$3600-\phi(3600)=3600-\phi(2^4 \cdot 3^2 \cdot 5^2 )=3600-3600(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{5})=3600 \cdot \frac{11}{15}=2640$$

Could you tell me if it is right? (Thinking) (Nerd)
That's right. :)
 
M R said:
That's right. :)

Great! Thanks a lot! (Happy)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
966
  • · Replies 3 ·
Replies
3
Views
725
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
1
Views
1K