Calculating Probability Using Bayes' Formula: Solving for P(urn III | silver)

Click For Summary

Homework Help Overview

The discussion revolves around calculating probabilities using Bayes' formula in the context of a problem involving three urns containing coins of different types. The specific question is about finding the probability of selecting urn III given that a silver coin was drawn.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the application of Bayes' formula and the interpretation of the probability tree. There are attempts to clarify the distinction between calculating P(urn III | silver) and P(silver | urn III). Some participants express confusion about the calculations and the structure of the probability tree.

Discussion Status

There is ongoing clarification regarding the correct application of Bayes' formula and the interpretation of results. Some participants have provided guidance on how to approach the problem, while others are questioning the accuracy of the probability tree and the sums of probabilities presented.

Contextual Notes

The original problem statement specifies the contents of each urn and the conditions under which a coin is drawn. There are mentions of potential errors in the probability tree and the need for the last column to sum to 1, indicating a focus on ensuring the accuracy of the calculations involved.

stunner5000pt
Messages
1,447
Reaction score
5
Homework Statement
There are three urn contains coins
Urn 1: 5 gold coins
Urn 2: 3 gold, 3 silver
Urn 3: 3 silver

An urn is selected at randonm & a coin is drawn from the urn. If the selected coin is silver, what is the probability that urn III was selected

Determine the probability using Bayes formula & a tree
Relevant Equations
Bayes Formula
From my understanding of Bayes formula, it should look like something like this

P(Silver| III) = \frac{P(III | silver) \times P(silver)}{P(III)}

now we know that P(urn III) = 1/3
and the probability of P(silver) = Pr(silver|urn I) + P(silver|urn II) + P(silver|urn III) = 1/3 (0) + 1/3 (1/2) + 1/3 (1) = 1/2

But how do i calculate P(urn 3|silver) ? Would it simply be 1/3?

If I used this, then
P(Silver| III) = (1/3)(1/2) / (1/3) = 1/2. is this correct?Using the tree, I have attached what I believe is the right tree.
Would the answer then be P(silver| urn III) = 1/3 / (1/2) = 2/3 ?
 

Attachments

  • Capture.PNG
    Capture.PNG
    8.4 KB · Views: 167
Physics news on Phys.org
It's not clear to me whether you are trying to calculate the probability of urn 3 given silver;or, silver given urn 3.

The probability tree is the way to go, IMO. But you need to combine probabilities as you go along. The last column in the tree should sum to 1, not 2 ( as you have).
 
PeroK said:
It's not clear to me whether you are trying to calculate the probability of urn 3 given silver;or, silver given urn 3.

The probability tree is the way to go, IMO. But you need to combine probabilities as you go along. The last column in the tree should sum to 1, not 2 ( as you have).
I believe that my usage of the Bayes formula (A|B) might be throwing you off.

The question statement is " An urn is selected at random & a coin is drawn from the urn. If the selected coin is silver, what is the probability that urn III was selected"

if using the formula, would it be the 1/2 that I got?

In the tree, doesn't it all add to 1? That is the
top probability is for urn 1 is 1/3, \
the middle two for urn 2 are 1/6 each and if you add them together you get 1/3,
and the bottom is 1/3

so if we add the 3(1/3) = 1?
 
stunner5000pt said:
I believe that my usage of the Bayes formula (A|B) might be throwing you off.

The question statement is " An urn is selected at random & a coin is drawn from the urn. If the selected coin is silver, what is the probability that urn III was selected"

if using the formula, would it be the 1/2 that I got?
I don't think so.
stunner5000pt said:
In the tree, doesn't it all add to 1?
it doesn't. The last column adds up to 2.
stunner5000pt said:
That is the
top probability is for urn 1 is 1/3, \
the middle two for urn 2 are 1/6 each and if you add them together you get 1/3,
and the bottom is 1/3

so if we add the 3(1/3) = 1?
Those numbers are missing from your tree.

In any case, how do you interpret your tree?
 
  • Like
Likes   Reactions: stunner5000pt
stunner5000pt said:
Homework Statement:: There are three urn contains coins
Urn 1: 5 gold coins
Urn 2: 3 gold, 3 silver
Urn 3: 3 silver

An urn is selected at randonm & a coin is drawn from the urn. If the selected coin is silver, what is the probability that urn III was selected

Determine the probability using Bayes formula & a tree
Relevant Equations:: Bayes Formula

From my understanding of Bayes formula, it should look like something like this

P(Silver| III) = \frac{P(III | silver) \times P(silver)}{P(III)}

now we know that P(urn III) = 1/3
Yes.
stunner5000pt said:
and the probability of P(silver) = Pr(silver|urn I) + P(silver|urn II) + P(silver|urn III) = 1/3 (0) + 1/3 (1/2) + 1/3 (1) = 1/2
You mean P(silver) = P(silver|urn I)P(urn I) + P(silver|urn II)P(urn II) + P(silver|urn III)P(urn III), which is what you calculated.
EDIT to match his calculations: P(silver) = P(urn I)P(silver|urn I) + P(urn II)P(silver|urn II) + P(urn III)P(silver|urn III)
stunner5000pt said:
But how do i calculate P(urn 3|silver) ? Would it simply be 1/3?
It is whatever you get when you plug the numbers into the Relevant Equation you gave us.
Rearrange the Relevant Equation to get P(urn III | silver) = P(silver | urn III)P(urn III) / P(silver).
stunner5000pt said:
If I used this, then
P(Silver| III) = (1/3)(1/2) / (1/3) = 1/2. is this correct?
No. P(urn III | silver) = P(silver | urn III)P(urn III) / P(silver) = ???.
stunner5000pt said:
Using the tree, I have attached what I believe is the right tree.
Would the answer then be P(silver| urn III) = 1/3 / (1/2) = 2/3 ?
Yes,
CORRECTION: I think you mean P(urn III | silver = 2/3. That is what the problem asked for.
 
Last edited:
  • Like
Likes   Reactions: stunner5000pt
stunner5000pt said:
Using the tree, I have attached what I believe is the right tree.
Would the answer then be P(silver| urn III) = 1/3 / (1/2) = 2/3 ?
FactChecker said:
Yes.
Except ##P(silver| III) =1##, as that is the probability of silver given urn III.
 
  • Like
Likes   Reactions: FactChecker and stunner5000pt
PeroK said:
Except ##P(silver| III) =1##, as that is the probability of silver given urn III.
Thanks! I stand corrected. I'm sure that he meant P( urn III | silver), which is what the problem asked for. I corrected my post.
 
  • Like
Likes   Reactions: stunner5000pt

Similar threads

Replies
8
Views
8K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
5K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
3K