MHB Calculating $$\sum_{0 \le k \le n}(-1)^k k^n \binom{n}{k}$$

  • Thread starter Thread starter MountEvariste
  • Start date Start date
MountEvariste
Messages
85
Reaction score
0
Find the value of $$\sum_{0 \le k \le n}(-1)^k k^n \binom{n}{k}. $$
 
Mathematics news on Phys.org
The answer is:

$\sum_{k=0}^{n}(-1)^kk^n\binom{n}{k} = (-1)^nn!\;\;\;\;(1)$

In order to show the identity, we need the following lemma:

$\sum_{k=0}^{n}(-1)^kk^m\binom{n}{k} = 0 , \, \, \, \, m = 0,1,.., n-1.\;\;\; (2)$

Proof by induction:

Consider the binomial identity: $(1-x)^n =\sum_{j=0}^{n}\binom{n}{j}(-1)^jx^j \;\;\; (3)$

Case $m = 0$: Putting $x = 1$ in $(3)$ yields: $\sum_{j=0}^{n}\binom{n}{j}(-1)^j = 0$

Case $m = 1$: Differentiating $(3)$ once yields: $-n(1-x)^{n-1} =\sum_{j=0}^{n}\binom{n}{j}(-1)^jjx^{j-1}$

Again putting $x = 1$: $\sum_{j=0}^{n}\binom{n}{j}(-1)^jj = 0$.

Assume the $m$th step is OK, where $1 \leq m < n-1$. We need to show, that our lemma also holds for step $m+1$:

Differentiate $(3)$ $m+1$ times:

$(-1)^{m+1}n(n-1)...(n-m)(1-x)^{n-m-1} = \sum_{j=0}^{n}\binom{n}{j}(-1)^jj(j-1)..(j-m)x^{j-m-1}$

Evaluating at $x = 1$:

\[\sum_{j=0}^{n}\binom{n}{j}(-1)^j\left ( j^{m+1}+c_mj^m+c_{m-1}j^{m-1} + ... + c_1j\right )=0 \\ \\ \sum_{j=0}^{n}\binom{n}{j}(-1)^jj^{m+1} + c_m\sum_{j=0}^{n}\binom{n}{j}(-1)^jj^m +c_{m-1}\sum_{j=0}^{n}\binom{n}{j}(-1)^jj^{m-1}+...+c_1\sum_{j=0}^{n}\binom{n}{j}(-1)^jj =0 \\ \therefore \sum_{j=0}^{n}\binom{n}{j}(-1)^jj^{m+1} = 0.\]

Now we are well prepared to prove, that $(1)$ holds. This will be another proof by induction:

Let $S_n = \sum_{k=0}^{n}(-1)^kk^n\binom{n}{k}$. Then we have:

$S_0 = 1 = (-1)^00!$, and $S_1 = (-1)^00^1\binom{1}{0}+(-1)^11^1\binom{1}{1} = -1 = (-1)^11!$

Therefore, we may assume, that $(1)$ holds for some step $ n > 1$: $S_n = (-1)^nn!$

\[S_{n+1} = \sum_{k=0}^{n+1}(-1)^kk^{n+1}\binom{n+1}{k} = \sum_{k=1}^{n+1}(-1)^kk^n\frac{(n+1)!}{(k-1)!(n+1-k)!}\\= \sum_{j=0}^{n}(-1)^{j+1}(j+1)^n\frac{(n+1)n!}{j!(n-j)!}= -(n+1)\sum_{j=0}^{n}(-1)^j(j+1)^n\binom{n}{j} \\= -(n+1)\sum_{j=0}^{n}(-1)^j\left ( 1+\binom{n}{1}j+\binom{n}{2}j^{2}+...+\binom{n}{n-1}j^{n-1}+j^n \right )\binom{n}{j} \\=-(n+1)\left ( \sum_{m=0}^{n-1}\binom{n}{m}\sum_{j=0}^{n}(-1)^jj^{m}\binom{n}{j}+S_n\right )\]

With the help of our lemma, the double sum in the parenthesis equals 0, so we are left with:

\[S_{n+1} = -(n+1)S_n = (-1)^{n+1}(n+1)! \;\;\; q.e.d.\]
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K