MHB Calculating $$\sum_{0 \le k \le n}(-1)^k k^n \binom{n}{k}$$

  • Thread starter Thread starter MountEvariste
  • Start date Start date
MountEvariste
Messages
85
Reaction score
0
Find the value of $$\sum_{0 \le k \le n}(-1)^k k^n \binom{n}{k}. $$
 
Mathematics news on Phys.org
The answer is:

$\sum_{k=0}^{n}(-1)^kk^n\binom{n}{k} = (-1)^nn!\;\;\;\;(1)$

In order to show the identity, we need the following lemma:

$\sum_{k=0}^{n}(-1)^kk^m\binom{n}{k} = 0 , \, \, \, \, m = 0,1,.., n-1.\;\;\; (2)$

Proof by induction:

Consider the binomial identity: $(1-x)^n =\sum_{j=0}^{n}\binom{n}{j}(-1)^jx^j \;\;\; (3)$

Case $m = 0$: Putting $x = 1$ in $(3)$ yields: $\sum_{j=0}^{n}\binom{n}{j}(-1)^j = 0$

Case $m = 1$: Differentiating $(3)$ once yields: $-n(1-x)^{n-1} =\sum_{j=0}^{n}\binom{n}{j}(-1)^jjx^{j-1}$

Again putting $x = 1$: $\sum_{j=0}^{n}\binom{n}{j}(-1)^jj = 0$.

Assume the $m$th step is OK, where $1 \leq m < n-1$. We need to show, that our lemma also holds for step $m+1$:

Differentiate $(3)$ $m+1$ times:

$(-1)^{m+1}n(n-1)...(n-m)(1-x)^{n-m-1} = \sum_{j=0}^{n}\binom{n}{j}(-1)^jj(j-1)..(j-m)x^{j-m-1}$

Evaluating at $x = 1$:

\[\sum_{j=0}^{n}\binom{n}{j}(-1)^j\left ( j^{m+1}+c_mj^m+c_{m-1}j^{m-1} + ... + c_1j\right )=0 \\ \\ \sum_{j=0}^{n}\binom{n}{j}(-1)^jj^{m+1} + c_m\sum_{j=0}^{n}\binom{n}{j}(-1)^jj^m +c_{m-1}\sum_{j=0}^{n}\binom{n}{j}(-1)^jj^{m-1}+...+c_1\sum_{j=0}^{n}\binom{n}{j}(-1)^jj =0 \\ \therefore \sum_{j=0}^{n}\binom{n}{j}(-1)^jj^{m+1} = 0.\]

Now we are well prepared to prove, that $(1)$ holds. This will be another proof by induction:

Let $S_n = \sum_{k=0}^{n}(-1)^kk^n\binom{n}{k}$. Then we have:

$S_0 = 1 = (-1)^00!$, and $S_1 = (-1)^00^1\binom{1}{0}+(-1)^11^1\binom{1}{1} = -1 = (-1)^11!$

Therefore, we may assume, that $(1)$ holds for some step $ n > 1$: $S_n = (-1)^nn!$

\[S_{n+1} = \sum_{k=0}^{n+1}(-1)^kk^{n+1}\binom{n+1}{k} = \sum_{k=1}^{n+1}(-1)^kk^n\frac{(n+1)!}{(k-1)!(n+1-k)!}\\= \sum_{j=0}^{n}(-1)^{j+1}(j+1)^n\frac{(n+1)n!}{j!(n-j)!}= -(n+1)\sum_{j=0}^{n}(-1)^j(j+1)^n\binom{n}{j} \\= -(n+1)\sum_{j=0}^{n}(-1)^j\left ( 1+\binom{n}{1}j+\binom{n}{2}j^{2}+...+\binom{n}{n-1}j^{n-1}+j^n \right )\binom{n}{j} \\=-(n+1)\left ( \sum_{m=0}^{n-1}\binom{n}{m}\sum_{j=0}^{n}(-1)^jj^{m}\binom{n}{j}+S_n\right )\]

With the help of our lemma, the double sum in the parenthesis equals 0, so we are left with:

\[S_{n+1} = -(n+1)S_n = (-1)^{n+1}(n+1)! \;\;\; q.e.d.\]
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top