MHB Calculating the Derivative of an Exponential Function with Logarithms?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
To find the derivative of the function f(x) = 3^(2x+5) + log_3(x^2+4), the derivative of the exponential part is calculated using the formula d(a^x)/dx = ln(a) * a^x. For the logarithmic part, the change of base formula is applied, yielding y' = (2x)/(ln(3)(x^2+4)). The discussion highlights the use of both the change of base formula and the derivative properties of exponential and logarithmic functions. Overall, participants express satisfaction with the clarity and utility of the derivation process.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find $f'(x)$
$\displaystyle
f(x)={3}^{2x+5}+\log_3(x^2+4)$

Didn't know how to do the $\log_3(x^2+4)$
 
Physics news on Phys.org
$$y=\log_3(x^2+4)$$

$$3^y=x^2+4$$

$$y\ln(3)=\ln(x^2+4)$$

$$y'\ln(3)=\frac{2x}{x^2+4}$$

$$y'=\frac{2x}{\ln(3)\left(x^2+4\right)}$$
 
I'm in math heaven😎
 
The change of base formula for logs* may also be used:

$$\begin{align*}y&=\log_3(x^2+4) \\
&=\frac{\ln(x^2+4)}{\ln(3)} \\
y'&=\frac{2x}{\ln(3)(x^2+4)}\end{align*}$$

*Proof of the change of base formula:

$$\begin{align*}y&=\log_a(b) \\
a^y&=b \\
y\log_c(a)&=\log_c(b) \\
&y=\frac{\log_c(b)}{\log_c(a)}\end{align*}$$
 
Or just use the fact that \frac{d(log_a(x))}{dx}= \frac{1}{log_e(a)}\frac{1}{x}.

That follows from the "change of base" formula greg1313 gave: \frac{d(log_a(x))}{dx}= \frac{d\left(\frac{log_e(x)}{log_e(a)}\right)}{dx}= \frac{1}{log_e(a)}\frac{dlog_e(x)}{dx}= \frac{1}{log_e(a)}\frac{1}{x}.

Generally, \frac{da^x}{dx}= ln(a) a^x and \frac{dlog_a(x)}{dx}= \frac{1}{ln(a)}\frac{1}{x}.
 
Thanks everyone. Major help☕
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K