Calculating the force in suspension as a car hits the brakes

In summary, this person is asking about how to calculate the amount of force that is going through the suspension when the car brakes. They mention the importance of the 1.2 G retardation and the weight that is being transferred. They also mention the importance of diagonal load transfer, which is a topic that is beyond the scope of this question.
  • #1
Ben Reade
11
0
Hello,
Firstly thank you for reading my post.
This is an interesting question I was wondering if anyone here could teach me how to work out.

Say if you had a large go-kart (FSAE/Formula Student if anyone knows of that) and you were driving at 120kph and hit the brakes and stopped in 3 seconds, how much force is going through the suspension spring/dampener.

Similarly what if it is going around a corner with a radius of 7.7kph at 80kph.

Here is a diagram of what I am talking about. Its double A-Arm wishbone suspension, along with any data you will need, such as weights and dimensions.

upload_2016-2-3_21-53-11.png

upload_2016-2-3_21-53-31.png

upload_2016-2-3_21-53-57.png

upload_2016-2-3_21-55-35.png

upload_2016-2-3_21-56-5.png


upload_2016-2-3_21-56-20.png

upload_2016-2-3_21-56-40.png

cough cough http://brage.bibsys.no/xmlui/bitstream/handle/11250/183058/Master oppgave-endelig.pdf?sequence=1
 
Engineering news on Phys.org
  • #2
Ben..nice question...you are not addressing one HUGE part of the question...
in racing, its all about tires, Tires, TIRES..
tires are what interfaces between the immovable asphalt ( could be dirt but i digress) track and the moving object ( in this case..the race car).
also the tire compound must be addressed. these things are covered in the slip angle charts for tire adhesion by the tire manufacturer. Other factors involved are track conditions..i.e. is track slick due to sum light or is track cold due to cloudy conditions..all impact the brakes...and what compound brake pads are you using or is it drum brakes?

so you can not properly calculate the force going thru the suspension until you know the force countering the momentum...
i suggest you read Race CAR Suspension Class in Mechanical Engineering section of this fine forum
 
  • Like
Likes Ben Reade and billy_joule
  • #3
F=MA
Force = mass x Acceleration (in this scenario, deceleration)
M=350kg
A= (120km/h)/3s = 11.1 m/s^2
F= (350kg )11.1m/s^2
= 3889N
Now that's the total force from the car stopping from 120kph to 0 in 3 s. How it gets distributed throughout the suspension, I wouldn't be able to tell you.
 
  • Like
Likes Ben Reade
  • #4
from a crew chief prospective

Longitudinal Load transfer (LT) – Braking at 1.2 G retardation
Vehicle weight x Center of Gravity Height / wheelbase
An Indy car weighing 1760 lbs. total with 100” wheelbase and CG at 13” would have
LT = 1.2g [ 1760x 13 / 100] = 275 lbs.

the 1.2 G needs to be known..
this is considering LOAD transfer as the front suspension would "feel" if it was possible to place this car on scales at speed..it is used to calculate spring rate required to reach maximum handling. Other factors are diagonal load transfer in a turn or while cornering but that is a whole new topic.
 
  • #5
upload_2016-2-8_9-27-59.png

upload_2016-2-8_9-29-55.png

Tire data on request from manufacturer.
upload_2016-2-8_10-1-12.png

upload_2016-2-8_10-2-9.png

upload_2016-2-8_10-2-34.png

upload_2016-2-8_10-2-52.png

upload_2016-2-8_10-3-14.png

Tire PSI of 22.
A value of 3,500N to 4,000N from braking is roughly what I was expecting. Perhaps a bit lower.

Ranger Mike said:
Other factors are diagonal load transfer in a turn
Ranger Mike here is what data I have for the tires and I'm working on getting extra information from a team mate. Yes how would I calculate the diagonal load transfer in a 7m radius turn during flat cornering. I read your MEGA-thread. Excellent writing. I couldn't find any section about diagonal loading though, especially on actually calculating , aside from the software you mentioned. Is the software free to download?

Thanks
 
Last edited:
  • #6
Race car suspension class, page 37 post # 676 tells you how to figure the total amount of " weight transfer" as well as the amount going forward. Subtracting the amount going forward from the total will approximate the diagonal amount of " weight " transfer. This calculation is used to approximate the required spring rate to handle this.. " weight". It is a good way to begin to understand the dynamics of the suspension in a turn.

On page 41 the true definition of LOAD transfer is for the purist who wants to understand the physics behind the process.
 
  • Like
Likes Ben Reade

What is the formula for calculating the force in suspension as a car hits the brakes?

The formula for calculating the force in suspension is F = m x a, where F is the force, m is the mass of the car, and a is the acceleration caused by the brakes.

How do you determine the mass of the car in order to calculate the force in suspension?

The mass of the car can be determined by using a scale or by referring to the car's specifications provided by the manufacturer.

What factors can affect the force in suspension as a car hits the brakes?

The force in suspension can be affected by the mass of the car, the type and condition of the suspension system, the speed of the car, and the force applied by the brakes.

What units are used to express the force in suspension?

The force in suspension is typically expressed in Newtons (N) or pounds (lbs).

How can the force in suspension be minimized when a car hits the brakes?

The force in suspension can be minimized by using a suspension system with better shock absorbers, reducing the speed of the car, and applying the brakes gradually instead of suddenly.

Similar threads

  • Mechanical Engineering
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
5
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
8
Views
4K
Replies
36
Views
7K
Replies
1
Views
2K
Replies
15
Views
10K
  • Engineering and Comp Sci Homework Help
Replies
16
Views
5K
Replies
1
Views
1K
  • General Math
Replies
1
Views
1K
Replies
6
Views
4K
Back
Top