MHB Calculating the Value of $f(m,n)$

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Value
Click For Summary
The function \( f(m,n) = 3m+n+(m+n)^2 \) is analyzed for its summation \( \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} 2^{-f(m,n)} \), which converges quickly and can be approximated numerically to around 1.33333. Evaluating small values of \( m \) and \( n \) reveals a pattern in the outputs of \( f(m,n) \), suggesting interesting properties of the function. The problem originates from a Putnam competition, although the specific year is not recalled. The discussion emphasizes the importance of examining small variable values to gain insights into the function's behavior.
juantheron
Messages
243
Reaction score
1
Let $f(m,n) = 3m+n+(m+n)^2.$ Then value of $\displaystyle \sum_{n=0}^{\infty}\;\; \sum_{m=0}^{\infty}2^{-f(m,n)}=$
 
Physics news on Phys.org
Take a look at $f(n,m).$
 
jacks said:
Let $f(m,n) = 3m+n+(m+n)^2.$ Then value of $\displaystyle \sum_{n=0}^{\infty}\;\; \sum_{m=0}^{\infty}2^{-f(m,n)}=$

Might I ask where this question comes from?

The sum converges very quickly and can be evaluated numerically with 4 terms of each summation (it is \(\approx 1.33333\), which is very suggestive ... ) to good accuracy.

CB

(why the previous calc got the wrong answer I still have no idea)
 
Last edited:
I hope Krizalid will not object if I add a bit to his very helpful suggestion. In problems like this, my advice is always to start by looking at what happens for small values of the variables. In this case, if you make a table of the values of $f(m,n)$ for small values of $m$ and $n$, it looks like this:

$$\begin{array}{cc}&\;\;\;\;n \\ \rlap{m} & \begin{array}{c|cccc} &0&1&2&3 \\ \hline 0&0&2&6&12 \\ 1&4&8&14&. \\ 2&10&16&.&. \\ 3&18&.&.&. \end{array} \end{array}$$

Doesn't that suggest something very interesting about the range of the function $f(m,n)$?
 
CaptainBlack said:
Might I ask where this question comes from?
It's from a Putnam. I don't remember the year though.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K