MHB Can a^3+b^3+c^3 Equal d^3+e^3 Given Specific Conditions?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Compare
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Problem:

Let $a$, $b$, $c$, $d$ and $e$ be strictly positive real numbers such that:

$$a^2+b^2+c^2=d^2+e^2$$

$$a^4+b^4+c^4=d^4+e^4$$

Compare $$a^3+b^3+c^3$$ with $$d^3+e^3$$.

I have been exhausting all kinds of algebraic tricks, but I still don't get anywhere near to cracking it, and it is so frustrating not knowing how to solve it...

Any help and/or suggestions toward how to solve this problem is much appreciated.
 
Mathematics news on Phys.org
Have you considered limiting the Domain?

1) What happens when all of a, b, c, d, e are greater than 1?
2) Everything is 1
3) All are between 0 and 1.
 
First, I see some restrictions on $a, b$ and $c$. If you eliminate say $e$ from the pair of equations you get

$d^4 - (a^2+b^2+c^2)d^2 + a^2b^2 + a^2c^2 + b^2c^2 = 0$

Since $d$ is real this means that

$(a^2+b^2+c^2)^2-4(a^2b^2 + a^2c^2 + b^2c^2) \ge 0$

or

$a^4+b^4+c^4- 2 a^2b^2- 2 a^2c^2 -2 b^2c^2 \ge 0$

Also note that if $a=b=c = 1$ then we have a contradiction so this can't happen.
 
Last edited:
tkhunny said:
Have you considered limiting the Domain?

1) What happens when all of a, b, c, d, e are greater than 1?
2) Everything is 1
3) All are between 0 and 1.

Thanks for the hint, tkhunny...and I think we can rule out the possibility when all of them are 1 because

$$1^2+1^2+1^2 \ne 1^2+1^2$$ and $$1^4+1^4+1^4 \ne 1^4+1^4$$

But for the case where all of the variables are between 0 and 1, do you mean to suggest that we could let, for example a=cosA as another way to approach the problem?

Jester said:
First, I see some restrictions on $a, b$ and $c$. If you eliminate say $e$ from the pair of equations you get

$d^4 - (a^2+b^2+c^2)d^2 + a^2b^2 + a^2c^2 + b^2c^2 = 0$

Since $d$ is real this means that

$(a^2+b^2+c^2)^2-4(a^2b^2 + a^2c^2 + b^2c^2) \ge 0$

or

$a^4+b^4+c^4- 2 a^2b^2- 2 a^2c^2 -2 b^2c^2 \ge 0$

Also note that if $a=b=c = 1$ then we have a contradiction so this can't happen.

Thanks Jester for showing me some insight that I would not have thought of it myself...but, what should I do after that? I am so confused...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top