MHB Can a Function Be Discontinuous Only at Irrationals?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Does there exist a real-valued function on $\Bbb R$ that is discontinuous only on the irrationals?

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
No. If so an function $f$ existed, then its oscillation $\omega_f$ would be identically zero on $\Bbb Q$. The rationals can then be written as a countable intersection of open sets $A_n := \{x : \omega_f(x) < 1/n\}$. This implies $\Bbb Q$ is a G$_{\delta}$ set, in $\Bbb R$, contradicting the Baire category theorem.
 
Back
Top