Can a set include negative infinity and be bounded below

Click For Summary
SUMMARY

The discussion centers on proving that the set {x ∈ ℝ : x² ≥ 1} is not bounded below. Participants analyze the definition of a lower bound and provide a proof by contradiction, demonstrating that for any proposed lower bound m, there exists an element a in the set such that a < m. The proof is validated through three cases based on the value of m, ultimately concluding that the set approaches negative infinity, confirming it lacks a lower bound.

PREREQUISITES
  • Understanding of real numbers (ℝ) and their properties.
  • Familiarity with the concept of lower bounds in set theory.
  • Knowledge of proof techniques, particularly proof by contradiction.
  • Basic algebraic manipulation and inequalities.
NEXT STEPS
  • Study the properties of bounded and unbounded sets in real analysis.
  • Learn about proof techniques in mathematics, focusing on contradiction and case analysis.
  • Explore the implications of limits approaching negative infinity in set theory.
  • Investigate the definitions and properties of intervals in the real number line.
USEFUL FOR

Mathematics students, educators, and anyone interested in real analysis and set theory, particularly those studying properties of bounded sets and proof methodologies.

fishturtle1
Messages
393
Reaction score
82

Homework Statement


Prove that {##x \epsilon \mathbb{R} : x^2 \ge 1##} is "not" bounded below.
EDIT: I Looked closely and realized there is a "not" that we all had to write in...sorry if you lost some time..

Homework Equations


definition: We say a nonempty subset ##A## of ##\mathbb{R}## is bounded below, if there is a real number ##m## such that ##m \le x## for all ##x \epsilon A##. We call such an ##m## an lower bound of ##A##.

The Attempt at a Solution


I don't think this is bounded below.

Proof: This will be a proof by contradiction. Suppose ##m## is a lower bound of the set A ={##x \epsilon \mathbb{R} : x^2 \ge 1##}. Then ##m \le x## for all ##x \epsilon A##. But ##m - 1 < m## and ##m - 1 \epsilon A##.(Not sure how to prove that last statement). Therefore ##m > (m-1)## and ##(m-1) \epsilon A##. Therefore m is not a lower bound, a contradiction. We conclude there does not exist a lower bound of A and A is not bounded below. []

Edit: in class we proved that the statement was True and had 3 cases but I don't see why the proof makes sense.

Consider 3 cases:

Case 1: Let ##m < -1## Let ##x = m - 1##. Then ##x = m - 1 < m##.

Case 2: Let ##m \epsilon [-1,1]##. Let ##x = m-4##. Then ##x = m - 4 < m##.

Case 3: Let ##m > 1##. Then ##x = -m##. Then ##x = -m < m##.

So we showed for any real number m, there exists an x such that x < m. Which I guess fulfills the definition. But I'm saying since the ##A## is going toward negative infinity, then I can always find a ##k## such that ##k < x##.
 
Last edited:
Physics news on Phys.org
Are you considering the negative numbers x where x2 ≥ 1? How low can those go?
 
FactChecker said:
Are you considering the negative numbers x where x2 ≥ 1? How low can those go?
To negative infinity
 
fishturtle1 said:
To negative infinity
Sorry, I didn't realize why there were three cases in the proof and didn't notice exactly what you were asking. Yes, your intuition is right that you can get as great a negative number as you want, but the complication of which region m is in was handled in 3 cases.
He could have just said something like a = -|m|-200 ∈ A and a < m. That would have taken care of all cases.
 
FactChecker said:
Sorry, I didn't realize why there were three cases in the proof and didn't notice exactly what you were asking. Yes, your intuition is right that you can get as great a negative number as you want, but the complication of which region m is in was handled in 3 cases.
He could have just said something like a = -|m|-200 ∈ A and a < m. That would have taken care of all cases.

So basically, if a = -|m| - 200 ##\epsilon## A and a < m, it follows that there is no lower bound, because for all elements m ##\epsilon## A, there exists an a ##\epsilon## A, such that a < m.

edit: had some questions.. but rereading your post a few times answered them...
 
fishturtle1 said:
So basically, if a = -|m| - 200 ##\epsilon## A and a < m, it follows that there is no lower bound, because for all elements m ##\epsilon## A, there exists an a ##\epsilon## A, such that a < m.

edit: had some questions.. but rereading your post a few times answered them...
Yes. And a = -|m| - 200 << -1 is always such a large negative number that it is guaranteed to be in A and lower than m. So there is no need to have 3 cases.
 
fishturtle1 said:

Homework Statement


Prove that {##x \epsilon \mathbb{R} : x^2 \ge 1##} is "not" bounded below.
EDIT: I Looked closely and realized there is a "not" that we all had to write in...sorry if you lost some time..

Homework Equations


definition: We say a nonempty subset ##A## of ##\mathbb{R}## is bounded below, if there is a real number ##m## such that ##m \le x## for all ##x \epsilon A##. We call such an ##m## an lower bound of ##A##.

The Attempt at a Solution


I don't think this is bounded below.

Proof: This will be a proof by contradiction. Suppose ##m## is a lower bound of the set A ={##x \epsilon \mathbb{R} : x^2 \ge 1##}. Then ##m \le x## for all ##x \epsilon A##. But ##m - 1 < m## and ##m - 1 \epsilon A##.(Not sure how to prove that last statement). Therefore ##m > (m-1)## and ##(m-1) \epsilon A##. Therefore m is not a lower bound, a contradiction. We conclude there does not exist a lower bound of A and A is not bounded below. []

Edit: in class we proved that the statement was True and had 3 cases but I don't see why the proof makes sense.

Consider 3 cases:

Case 1: Let ##m < -1## Let ##x = m - 1##. Then ##x = m - 1 < m##.

Case 2: Let ##m \epsilon [-1,1]##. Let ##x = m-4##. Then ##x = m - 4 < m##.

Case 3: Let ##m > 1##. Then ##x = -m##. Then ##x = -m < m##.

So we showed for any real number m, there exists an x such that x < m. Which I guess fulfills the definition. But I'm saying since the ##A## is going toward negative infinity, then I can always find a ##k## such that ##k < x##.
The title of your thread is misleading - or worse.
"Can a set include negative infinity and be bounded below" ?​

The set you describe is a subset of ℝ, the real numbers.

Neither −∞ , nor ∞ is a real number, so your set does not include −∞ .
 
SammyS said:
The title of your thread is misleading - or worse.
"Can a set include negative infinity and be bounded below" ?​

The set you describe is a subset of ℝ, the real numbers.

Neither −∞ , nor ∞ is a real number, so your set does not include −∞ .
That is my mistake, I see that −∞ is not in (−∞, ∞). What I meant was "If an interval is approaching −∞, can it also be bounded below?". I'm sorry for the carelessness.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
11
Views
2K
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
Replies
13
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K