MHB Can an invertible sheaf be isomorphic to the structure sheaf?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
An invertible sheaf over a ringed space $(X,\mathscr{O})$ is defined as a rank one locally free module over $\mathscr{O}$. The discussion centers on proving that the tensor sheaf $\mathscr{F}\otimes_\mathcal{O}\check{\mathscr{F}}$ is isomorphic to the structure sheaf $\mathscr{O}$, where $\check{\mathscr{F}}$ represents the sheaf of homomorphisms from $\mathscr{F}$ to $\mathscr{O}$. This relationship highlights the intrinsic link between invertible sheaves and the structure sheaf in algebraic geometry. The problem remains unsolved in the thread, inviting further exploration and solutions. Engaging with this topic can deepen understanding of sheaf theory and its applications.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is another chance to solve a sheaf problem!

-----
Let $(X,\mathscr{O})$ be a ringed space. Suppose $\mathscr{F}$ is an invertible sheaf over $\mathscr{O}$. That is, $\mathscr{F}$ is a rank one locally free module over $\mathscr{O}$. Prove that there is an isomorphism between the tensor sheaf $\mathscr{F}\otimes_\mathcal{O}\check{\mathscr{F}}$ and structure sheaf $\mathscr{O}$, where $\check{\mathscr{F}} = \operatorname{Hom}_X(\mathscr{F},\mathscr{O})$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
Let $x\in X$. Then there is an isomorphism $(\mathscr{F}\otimes_{\mathscr{O}} \check{\mathscr{F}})_x \approx \mathscr{F}_x \otimes_{\mathscr{O}_x} \check{\mathscr{F}}_x$. Since $\mathscr{F}$ is invertible over $\mathscr{O}$, $\mathscr{F}_x \approx \mathscr{O}_x$. Hence $\check{\mathscr{F}}_x \approx \operatorname{Hom}_{\mathscr{O}_x}(\mathscr{F}_x,\mathscr{O}_x) \approx \operatorname{Hom}_{\mathscr{O}_x}(\mathscr{O}_x,\mathscr{O}_x) \approx \mathscr{O}_x$, and so $\mathscr{F}_x \otimes_{\mathscr{O}_x} \check{\mathscr{F}}_x \approx \mathscr{O}_x \otimes_{\mathscr{O}_x} \mathscr{O}_x \approx \mathscr{O}_x$. Therefore, $(\mathscr{F} \otimes_\mathscr{O}\check{\mathscr{F}})_x \approx \mathscr{O}_x$. Since $x$ was arbitrary, the tensor sheaf $\mathscr{F}\otimes_{\mathscr{O}} \check{\mathscr{F}}$ is isomorphic to $\mathscr{O}$.