Can anyone please review/verify this proof of assertion?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Proof
Click For Summary
SUMMARY

The proof asserts that any prime of the form 3n+1 is also of the form 6m+1. The argument begins by excluding 2 as it is the only even prime and not of the form 3n+1. It establishes that primes of the form 3n+1 must be odd, leading to the conclusion that 3n must be even, hence n can be expressed as 2m. This results in the equation 3n+1=6m+1, confirming the assertion. Reviewers agree on the correctness of the proof but suggest rewording for clarity.

PREREQUISITES
  • Understanding of prime numbers and their properties
  • Basic knowledge of modular arithmetic
  • Familiarity with mathematical proofs and logic
  • Concept of coprime numbers
NEXT STEPS
  • Study the properties of prime numbers in number theory
  • Learn about modular arithmetic and its applications
  • Explore different proof techniques in mathematics
  • Investigate the significance of coprime numbers in number theory
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in mathematical proofs and properties of prime numbers.

Math100
Messages
818
Reaction score
231
Homework Statement
Prove the assertion below:
Any prime of the form 3n+1 is also of the form 6m+1.
Relevant Equations
None.
Proof: Suppose that any prime of the form 3n+1
is also of the form 6m+1.
Note that 2 is the only even prime number
and it is not of the form 3n+1.
This means any prime of the form 3n+1 must be odd.
Since 3n+1 is odd, it follows that 3n must be even.
Then we have n=2m for some integer m.
Thus 3n+1=3(2m)+1
=6m+1.
Therefore, any prime of the form 3n+1 is also of the form 6m+1.

Above is my proof for this assertion. Can anyone please review/verify to see if it's correct?
 
Physics news on Phys.org
It is correct. Nothing to complain about.

You can also write it in formulas, after you excluded ##p=2## as you did:
##p=3n-1 \Longrightarrow 3\,|\,(p-1)## and, as you correctly observed, ##p## is odd, so ##p-1## is even, i.e.
##2\,|\,(p-1).## Because ##2## and ##3## are coprime (no common divisor), we get ##2\cdot 3\,|\,(p-1)## which is ##6m=p-1## or ##p=6m+1##.
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
It is correct. Nothing to complain about.

You can also write it in formulas, after you excluded ##p=2## as you did:
##p=3n-1 \Longrightarrow 3\,|\,(p-1)## and, as you correctly observed, ##p## is odd, so ##p-1## is even, i.e.
##2\,|\,(p-1).## Because ##2## and ##3## are coprime (no common divisor), we get ##2\cdot 3\,|\,(p-1)## which is ##6m=p-1## or ##p=6m+1##.
Thank you!
 
Math100 said:
Thank you!
Note that coprime is important here! If two numbers have a common divisor, say ##4## and ##6##, then both divide ##12## but ##4\cdot 6## does not!
 
  • Like
Likes   Reactions: Math100
Your logic is correct, but I would recommend a little rewording.
Math100 said:
Homework Statement:: Prove the assertion below:
Any prime of the form 3n+1 is also of the form 6m+1.
Relevant Equations:: None.

Proof: Suppose that any prime of the form 3n+1
is also of the form 6m+1.
You do not want to "suppose" this. That would be assuming the fact that you want to prove.
You should start with something like:
Proof: Suppose we have a prime, p, of the form p=3n+1.
Math100 said:
Note that 2 is the only even prime number
and it is not of the form 3n+1.
So p is not 2.
Math100 said:
This means any prime of the form 3n+1 must be odd.
Since 3n+1 is odd, it follows that 3n must be even.
Then we have n=2m for some integer m.
Thus 3n+1=3(2m)+1
=6m+1.
p = 6m+1.
##\blacksquare##
 
Last edited:
  • Like
Likes   Reactions: Math100 and Orodruin
FactChecker said:
Your logic is correct, but I would recommend a little rewording.

You do not want to "suppose" this. That would be assuming the fact that you want to prove.
You should start with something like:
Proof: Suppose we have a prime, p, of the form p=3n+1.

So p is not 2.

p = 6m+1.
##\blacksquare##
Thank you!
 

Similar threads

Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
3
Views
1K
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
8K
  • · Replies 9 ·
Replies
9
Views
2K