Can anyone please verify/confirm these derivatives?

Click For Summary

Homework Help Overview

The discussion revolves around verifying derivatives related to a function F that depends on variables x and y', where y' is interpreted as a derivative. Participants are examining the correctness of partial derivatives and the application of the chain rule in this context.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to verify the correctness of various derivatives, particularly focusing on the partial derivatives of F with respect to x, y, and y'. Some participants question the use of y' as a variable and its implications for clarity in the discussion.

Discussion Status

There is an ongoing examination of the derivatives presented, with some participants expressing uncertainty about specific derivatives, particularly the one with respect to y. Guidance has been offered regarding the notation used, and some participants are confirming assumptions about the variables involved.

Contextual Notes

There is a noted confusion regarding the notation of y' and its interpretation, as well as the implications of using y' in the context of the function F. Some participants mention that the original problem statements from a textbook may have contributed to this confusion.

Math100
Messages
823
Reaction score
234
Homework Statement
If ## F(x, y')=\sqrt{x^2+y'^2} ##, find ## \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial y'}, \frac{dF}{dx} ## and ## \frac{d}{dx}(\frac{\partial F}{\partial y'}) ##. Also show that ## \frac{d}{dx}(\frac{\partial F}{\partial y'})=\frac{\partial}{\partial y'}(\frac{dF}{dx}) ##.
Relevant Equations
None.
Note that ## \frac{\partial F}{\partial x}=\frac{2x}{2\sqrt{x^2+y'^2}}=\frac{x}{\sqrt{x^2+y'^2}}, \frac{\partial F}{\partial y}=0, \frac{\partial F}{\partial y'}=\frac{2y'}{2\sqrt{x^2+y'^2}}=\frac{y'}{\sqrt{x^2+y'^2}} ##.
Now we have ## \frac{dF}{dx}=\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}y'+\frac{\partial F}{\partial y'}y"=\frac{x+y'y"}{\sqrt{x^2+y'^2}} ##.
Observe that ## \frac{d}{dx}(\frac{\partial F}{\partial y'})=\frac{d}{dx}(\frac{y'}{\sqrt{x^2+y'^2}})=\frac{\sqrt{x^2+y'^2}\cdot \frac{d}{dx}(y')-y'\cdot \frac{d}{dx}(\sqrt{x^2+y'^2})}{x^2+y'^2}=\frac{y"\cdot \sqrt{x^2+y'^2}-y'(\frac{x+y'y"}{\sqrt{x^2+y'^2}})}{\sqrt{x^2+y'^2}}=\frac{y"(x^2+y'^2)-y'(x+y'y")}{(x^2+y'^2)^{\frac{3}{2}}} ##.
Also ## \frac{\partial}{\partial y'}(\frac{dF}{dx})=\frac{\partial}{\partial y'}(\frac{x+y'y"}{\sqrt{x^2+y'^2}})=\frac{\sqrt{x^2+y'^2}\cdot \frac{\partial}{\partial y'}(x+y'y")-(x+y'y")\cdot \frac{\partial}{\partial y'}(\sqrt{x^2+y'^2})}{x^2+y'^2}=\frac{\sqrt{x^2+y'^2}\cdot y"-(x+y'y")\cdot (\frac{y'}{\sqrt{x^2+y'^2}})}{x^2+y'^2}=\frac{\sqrt{x^2+y'^2}(\sqrt{x^2+y'^2}\cdot y")-y'(x+y'y")}{\sqrt{x^2+y'^2}}\cdot \frac{1}{x^2+y'^2}=\frac{y"(x^2+y'^2)-y'(x+y'y")}{(x^2+y'^2)^{\frac{3}{2}}} ##.
Therefore, ## \frac{d}{dx}(\frac{\partial F}{\partial y'})=\frac{\partial}{\partial y'}(\frac{dF}{dx}) ##.
 
Physics news on Phys.org
As @fresh_42 suggested in another similar question, please try to avoid using y' as a variable, given it often is used to denote the derivative of y. Further, ##\partial F/ \partial y## is confusing , when dealing with ## F(x,y')##.
 
WWGD said:
As @fresh_42 suggested in another similar question, please try to avoid using y' as a variable, given it often is used to denote the derivative of y. Further, ##\partial F/ \partial y## is confusing , when dealing with ## F(x,y')##.
I'm guessing that y is a function of a single other variable, say t. If so, y' means ##\frac{dy}{dt}##.
@Math100, please confirm or deny my guess here.
 
  • Like
Likes   Reactions: jim mcnamara and WWGD
Mark44 said:
I'm guessing that y is a function of a single other variable, say t. If so, y' means ##\frac{dy}{dt}##.
@Math100, please confirm or deny my guess here.
Yes, I confirm.
 
WWGD said:
As @fresh_42 suggested in another similar question, please try to avoid using y' as a variable, given it often is used to denote the derivative of y. Further, ##\partial F/ \partial y## is confusing , when dealing with ## F(x,y')##.
I tried to avoid it too, but the book's problems were all written like that.
 
  • Like
Likes   Reactions: WWGD
@Math100, you have ##\frac{\partial F}{\partial y} = 0##. I haven't worked this out, but I don't think this is right.
The other three first partials look OK to me, at a glance. Haven't checked your work on the mixed partials.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K