SammyS
Staff Emeritus
Science Advisor
Homework Helper
- 11,987
- 1,579
Whether you you try n=34 or some other candidate as a counter example, try to be systematic.PeroK said:Did you try ##34##?
To see if some integer, ##n## is a counterexample, begin with ##a=0## and increment ##a## by ##1## while ##a^2<n##. For each value of ##a##, compute ##p_a## where ##p_a=n=a^2##.
For a given number ##n##, if all ##p_a## are composite (Neither prime, nor 1), then you have found a counter example.
Furthermore, consider using as candidates for ##n##, non-prime numbers of the form ##n=3k+1##. . You should find that using such a number for ##n## will generate a list of values for ##p_a## in which 5 of every 6 entries is divisible by 2 or 3 (or both).