Terry said:
gcd(m, n) = gcd(m+n, m-n)
let m = 3a and n = 3b where a and b are coprime, then gcd(m, n) = 3
m+n = 3(a+b) and m-n = 3(a-b) => gcd(m+n, m-n) = 3
I do not know what you mean by that, in fact, you want $m$ and $n$ to be coprime, not be both multiples of $3$.
The proof is rather simple and I am going to spell it out completely so that you see the method to it, let $d$ be the greatest common multiple of $m$ and $n$. Then clearly $d$ divides $m+n$ and $m-n$ (simply factor the $d$ out from both!), thus $d\leq d^\prime$, the greastest common divisor of $m+n$ and $m-n$, since $d$ is a common divisor of these.
Similarly, $d^\prime$ divides both $(m+n)+(m-n)=2\,m$ and $(m+n)-(m-n)=2\,n$, but! since $m+n$ and $m-n$ are odd, then $d^\prime$ is odd, thus $d^\prime | (2\,m)$ means $d^\prime | m$ and similarly $d^\prime |n$. Thus $d^\prime$ is a common divisor of $m$ and $n$ and $d^\prime \leq d$, because $d$ was the greatest common divisor of $m$ and $n$.
What yo conclude from this is that $d = d^\prime$.
Terry said:
That is true but what I need are all valid values of y for any given x to satisfy gcd(m, n) = 1
The lines I am thinking along is if I can make a substitution for x and y such that x + y + 1 and x - y will always be coprime without having to test gcd.
Basically the same way that if you require p to be even and q to be odd you can
let p = 2s and q = 2t+1
Then you are in
trouble, because, according to what I showed the condition for $y$ is $\gcd(2x+1,2y+1)=1$, and it is
necessary as well as sufficient. Thus your substitution should naturally produce, not one, not two, but
all of the odd integers coprime to $2x+1$ that are in the range $\{3,\ldots,2x-1\}$, and I do not think that is possible because the number (meaning 'quantity') of such integers is very irregular (at some point you will have to filter the results).
A little more technical note. If you pick an $x$ you have $$\text{number of solutions }y = \frac{\phi(2x+1)}{2} - 1\,,$$ where $\phi$ is the
Euler totient function, since $n\mapsto 2x+1-n$ maps an odd number coprime to $2x+1$ into an even number coprme to $2x+1$ bijectively (and then you have to substract $1$ to take into account that $2\cdot 0 + 1$ is not a valid solution).
Conclusion. With this what I am telling you is that your "substitution for x and y" should naturally take into account the number of integers between $1$ and $2x+1$ that are coprime to $2x+1$ (that is, $\phi(2x+1)$) which I do not expect to happen for $\phi$ is such an irregular function.
I showed you a simple pair $y=x-1$ that always works. If want to have all of them, maybe you will require more assumptions on $x$ and $y$.