davi2686
- 33
- 2
It is a nonsense use the generalized Stokes' theorem in right side of Faraday's Law?
we know this is true...\displaystyle \oint_{\partial \Sigma}\vec{E}\cdot dl=-\int_{\Sigma} \frac{d\vec{B}}{dt}\cdot d\vec{A}\Rightarrow \int_{\Sigma}\vec{\nabla}\times\vec{E}\cdot d\vec{A}=-\int_{\Sigma} \frac{d\vec{B}}{dt}\cdot d\vec{A}
i was thinking if we consider \Sigma a smooth manifold (i really don't know if i can do that)... can i do this?
\displaystyle \oint_{\partial \Sigma}\vec{E}\cdot dl=-\int_{\Sigma} \frac{d\vec{B}}{dt}\cdot d\vec{A}\Leftrightarrow \int_{\partial \Sigma}E=-\int_{\Sigma} \frac{d\vec{B}}{dt}\cdot d\vec{A} \Rightarrow \int_{\Sigma}\underline{d}E=-\int_{\Sigma} \frac{d\vec{B}}{dt}\cdot d\vec{A}
where \int_{\partial \Sigma}E is the integration in boundary of \Sigma manifold and \underline{d} the exterior derivative
i'm afraid i have done a mess with the concepts, but the doubt is in my head and it don't let me sleep...
we know this is true...\displaystyle \oint_{\partial \Sigma}\vec{E}\cdot dl=-\int_{\Sigma} \frac{d\vec{B}}{dt}\cdot d\vec{A}\Rightarrow \int_{\Sigma}\vec{\nabla}\times\vec{E}\cdot d\vec{A}=-\int_{\Sigma} \frac{d\vec{B}}{dt}\cdot d\vec{A}
i was thinking if we consider \Sigma a smooth manifold (i really don't know if i can do that)... can i do this?
\displaystyle \oint_{\partial \Sigma}\vec{E}\cdot dl=-\int_{\Sigma} \frac{d\vec{B}}{dt}\cdot d\vec{A}\Leftrightarrow \int_{\partial \Sigma}E=-\int_{\Sigma} \frac{d\vec{B}}{dt}\cdot d\vec{A} \Rightarrow \int_{\Sigma}\underline{d}E=-\int_{\Sigma} \frac{d\vec{B}}{dt}\cdot d\vec{A}
where \int_{\partial \Sigma}E is the integration in boundary of \Sigma manifold and \underline{d} the exterior derivative
i'm afraid i have done a mess with the concepts, but the doubt is in my head and it don't let me sleep...
Last edited: