Can inequality be proven with positive real numbers and fractions?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary

Discussion Overview

The discussion revolves around proving an inequality involving positive real numbers and fractions, specifically the expression $\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}$ under the condition that $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$. The scope includes mathematical reasoning and potential proofs.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant presents the inequality to be proven, establishing the condition involving positive real numbers.
  • Multiple participants indicate they have solutions, but the details of these solutions are not provided in the excerpts.
  • Responses express encouragement towards one participant's contribution, indicating engagement but not necessarily agreement on the solutions presented.

Areas of Agreement / Disagreement

The discussion does not show clear consensus on the validity of any proposed solutions, as the solutions themselves are not detailed. Multiple participants have contributed solutions, but no agreement on correctness is evident.

Contextual Notes

The discussion lacks detailed mathematical steps or assumptions that may be necessary for a complete understanding of the proposed inequality. The nature of the solutions and their validity remains unresolved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For the positive real numbers $x,\,y$ and $z$ that satisfy $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$, prove that

$\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}\le \dfrac{3}{\sqrt{2}}$.
 
Mathematics news on Phys.org
My solution:

Using cyclic symmetry, we find the extremum must occur for:

$$(x,y,z)=(1,1,1)$$

If we define:

$$f(x,y,z)=\frac{1}{\sqrt{x^3+1}}+\frac{1}{\sqrt{y^3+1}}+\frac{1}{\sqrt{z^3+1}}$$

then we obtain:

$$f(1,1,1)=\frac{3}{\sqrt{2}}$$

To determine the nature of the extremum, we pick another point on the constraint:

$$(x,y,z)=\left(2,\frac{4}{5},\frac{4}{5}\right)$$

And we find:

$$f\left(2,\frac{4}{5},\frac{4}{5}\right)=\frac{21+10\sqrt{105}}{63}<\frac{3}{\sqrt{2}}$$

Thus, the extremum is a maximum, and we may state:

$$f(x,y,z)\le\frac{3}{\sqrt{2}}$$
 
MarkFL said:
My solution:

Using cyclic symmetry, we find the extremum must occur for:

$$(x,y,z)=(1,1,1)$$

If we define:

$$f(x,y,z)=\frac{1}{\sqrt{x^3+1}}+\frac{1}{\sqrt{y^3+1}}+\frac{1}{\sqrt{z^3+1}}$$

then we obtain:

$$f(1,1,1)=\frac{3}{\sqrt{2}}$$

To determine the nature of the extremum, we pick another point on the constraint:

$$(x,y,z)=\left(2,\frac{4}{5},\frac{4}{5}\right)$$

And we find:

$$f\left(2,\frac{4}{5},\frac{4}{5}\right)=\frac{21+10\sqrt{105}}{63}<\frac{3}{\sqrt{2}}$$

Thus, the extremum is a maximum, and we may state:

$$f(x,y,z)\le\frac{3}{\sqrt{2}}$$

Good job, MarkFL! And thanks for participating!

My solution:

By AM-GM, we have $x^3+1\ge 2x\sqrt{x}$ so $\dfrac{1}{\sqrt{x^3+1}}\le\dfrac{1}{\sqrt{2}\sqrt{x}\sqrt[4]{x}}$. By the same token we also have $\dfrac{1}{\sqrt{y^3+1}}\le\dfrac{1}{\sqrt{2}\sqrt{y}\sqrt[4]{y}}$ and $\dfrac{1}{\sqrt{z^3+1}}\le\dfrac{1}{\sqrt{2}\sqrt{z}\sqrt[4]{z}}$.

Adding the three inequalities we get:

$\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{x}\sqrt[4]{x}}+\dfrac{1}{\sqrt{y}\sqrt[4]{y}}+\dfrac{1}{\sqrt{z}\sqrt[4]{z}}\right)$

Note that the following can be obtained by Cauchy–Schwarz inequality:

$\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\le\sqrt{1+1+1}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt{3}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$

$\dfrac{1}{\sqrt{x}\sqrt[4]{x}}+\dfrac{1}{\sqrt{y}\sqrt[4]{y}}+\dfrac{1}{\sqrt{z}\sqrt[4]{z}}\le\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\sqrt{\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}}=\sqrt{3}\sqrt{\left(\sqrt{3}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}$

Putting these pieces together, and since we're told that $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$ we see that we have proved:

$\begin{align*}\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}&\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{x}\sqrt[4]{x}}+\dfrac{1}{\sqrt{y}\sqrt[4]{y}}+\dfrac{1}{\sqrt{z}\sqrt[4]{z}}\right)\\&\le \dfrac{1}{\sqrt{2}} \sqrt{3}\sqrt{\left(\sqrt{3}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}\\&\le \dfrac{3}{\sqrt{2}}\end{align*}$
 
anemone said:
Good job, MarkFL! And thanks for participating!...

You likely knew I would use cyclic symmetry just as surely as I knew you would use AM-GM. (Smirk)
 
MarkFL said:
You likely knew I would use cyclic symmetry just as surely as I knew you would use AM-GM. (Smirk)

LOL! That is very true!
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K