MHB Can inequality be proven with positive real numbers and fractions?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
The discussion focuses on proving the inequality involving positive real numbers x, y, and z that satisfy the equation 1/x + 1/y + 1/z = 3. The goal is to demonstrate that 1/√(x^3 + 1) + 1/√(y^3 + 1) + 1/√(z^3 + 1) is less than or equal to 3/√2. Participants share their solutions and engage in problem-solving techniques. The conversation highlights the importance of mathematical proofs in understanding inequalities. Overall, the thread emphasizes collaborative problem-solving in mathematics.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For the positive real numbers $x,\,y$ and $z$ that satisfy $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$, prove that

$\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}\le \dfrac{3}{\sqrt{2}}$.
 
Mathematics news on Phys.org
My solution:

Using cyclic symmetry, we find the extremum must occur for:

$$(x,y,z)=(1,1,1)$$

If we define:

$$f(x,y,z)=\frac{1}{\sqrt{x^3+1}}+\frac{1}{\sqrt{y^3+1}}+\frac{1}{\sqrt{z^3+1}}$$

then we obtain:

$$f(1,1,1)=\frac{3}{\sqrt{2}}$$

To determine the nature of the extremum, we pick another point on the constraint:

$$(x,y,z)=\left(2,\frac{4}{5},\frac{4}{5}\right)$$

And we find:

$$f\left(2,\frac{4}{5},\frac{4}{5}\right)=\frac{21+10\sqrt{105}}{63}<\frac{3}{\sqrt{2}}$$

Thus, the extremum is a maximum, and we may state:

$$f(x,y,z)\le\frac{3}{\sqrt{2}}$$
 
MarkFL said:
My solution:

Using cyclic symmetry, we find the extremum must occur for:

$$(x,y,z)=(1,1,1)$$

If we define:

$$f(x,y,z)=\frac{1}{\sqrt{x^3+1}}+\frac{1}{\sqrt{y^3+1}}+\frac{1}{\sqrt{z^3+1}}$$

then we obtain:

$$f(1,1,1)=\frac{3}{\sqrt{2}}$$

To determine the nature of the extremum, we pick another point on the constraint:

$$(x,y,z)=\left(2,\frac{4}{5},\frac{4}{5}\right)$$

And we find:

$$f\left(2,\frac{4}{5},\frac{4}{5}\right)=\frac{21+10\sqrt{105}}{63}<\frac{3}{\sqrt{2}}$$

Thus, the extremum is a maximum, and we may state:

$$f(x,y,z)\le\frac{3}{\sqrt{2}}$$

Good job, MarkFL! And thanks for participating!

My solution:

By AM-GM, we have $x^3+1\ge 2x\sqrt{x}$ so $\dfrac{1}{\sqrt{x^3+1}}\le\dfrac{1}{\sqrt{2}\sqrt{x}\sqrt[4]{x}}$. By the same token we also have $\dfrac{1}{\sqrt{y^3+1}}\le\dfrac{1}{\sqrt{2}\sqrt{y}\sqrt[4]{y}}$ and $\dfrac{1}{\sqrt{z^3+1}}\le\dfrac{1}{\sqrt{2}\sqrt{z}\sqrt[4]{z}}$.

Adding the three inequalities we get:

$\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{x}\sqrt[4]{x}}+\dfrac{1}{\sqrt{y}\sqrt[4]{y}}+\dfrac{1}{\sqrt{z}\sqrt[4]{z}}\right)$

Note that the following can be obtained by Cauchy–Schwarz inequality:

$\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\le\sqrt{1+1+1}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt{3}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$

$\dfrac{1}{\sqrt{x}\sqrt[4]{x}}+\dfrac{1}{\sqrt{y}\sqrt[4]{y}}+\dfrac{1}{\sqrt{z}\sqrt[4]{z}}\le\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\sqrt{\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}}=\sqrt{3}\sqrt{\left(\sqrt{3}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}$

Putting these pieces together, and since we're told that $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$ we see that we have proved:

$\begin{align*}\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}&\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{x}\sqrt[4]{x}}+\dfrac{1}{\sqrt{y}\sqrt[4]{y}}+\dfrac{1}{\sqrt{z}\sqrt[4]{z}}\right)\\&\le \dfrac{1}{\sqrt{2}} \sqrt{3}\sqrt{\left(\sqrt{3}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}\\&\le \dfrac{3}{\sqrt{2}}\end{align*}$
 
anemone said:
Good job, MarkFL! And thanks for participating!...

You likely knew I would use cyclic symmetry just as surely as I knew you would use AM-GM. (Smirk)
 
MarkFL said:
You likely knew I would use cyclic symmetry just as surely as I knew you would use AM-GM. (Smirk)

LOL! That is very true!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top