MHB Can inequality be proven with positive real numbers and fractions?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
The discussion focuses on proving the inequality involving positive real numbers x, y, and z that satisfy the equation 1/x + 1/y + 1/z = 3. The goal is to demonstrate that 1/√(x^3 + 1) + 1/√(y^3 + 1) + 1/√(z^3 + 1) is less than or equal to 3/√2. Participants share their solutions and engage in problem-solving techniques. The conversation highlights the importance of mathematical proofs in understanding inequalities. Overall, the thread emphasizes collaborative problem-solving in mathematics.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For the positive real numbers $x,\,y$ and $z$ that satisfy $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$, prove that

$\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}\le \dfrac{3}{\sqrt{2}}$.
 
Mathematics news on Phys.org
My solution:

Using cyclic symmetry, we find the extremum must occur for:

$$(x,y,z)=(1,1,1)$$

If we define:

$$f(x,y,z)=\frac{1}{\sqrt{x^3+1}}+\frac{1}{\sqrt{y^3+1}}+\frac{1}{\sqrt{z^3+1}}$$

then we obtain:

$$f(1,1,1)=\frac{3}{\sqrt{2}}$$

To determine the nature of the extremum, we pick another point on the constraint:

$$(x,y,z)=\left(2,\frac{4}{5},\frac{4}{5}\right)$$

And we find:

$$f\left(2,\frac{4}{5},\frac{4}{5}\right)=\frac{21+10\sqrt{105}}{63}<\frac{3}{\sqrt{2}}$$

Thus, the extremum is a maximum, and we may state:

$$f(x,y,z)\le\frac{3}{\sqrt{2}}$$
 
MarkFL said:
My solution:

Using cyclic symmetry, we find the extremum must occur for:

$$(x,y,z)=(1,1,1)$$

If we define:

$$f(x,y,z)=\frac{1}{\sqrt{x^3+1}}+\frac{1}{\sqrt{y^3+1}}+\frac{1}{\sqrt{z^3+1}}$$

then we obtain:

$$f(1,1,1)=\frac{3}{\sqrt{2}}$$

To determine the nature of the extremum, we pick another point on the constraint:

$$(x,y,z)=\left(2,\frac{4}{5},\frac{4}{5}\right)$$

And we find:

$$f\left(2,\frac{4}{5},\frac{4}{5}\right)=\frac{21+10\sqrt{105}}{63}<\frac{3}{\sqrt{2}}$$

Thus, the extremum is a maximum, and we may state:

$$f(x,y,z)\le\frac{3}{\sqrt{2}}$$

Good job, MarkFL! And thanks for participating!

My solution:

By AM-GM, we have $x^3+1\ge 2x\sqrt{x}$ so $\dfrac{1}{\sqrt{x^3+1}}\le\dfrac{1}{\sqrt{2}\sqrt{x}\sqrt[4]{x}}$. By the same token we also have $\dfrac{1}{\sqrt{y^3+1}}\le\dfrac{1}{\sqrt{2}\sqrt{y}\sqrt[4]{y}}$ and $\dfrac{1}{\sqrt{z^3+1}}\le\dfrac{1}{\sqrt{2}\sqrt{z}\sqrt[4]{z}}$.

Adding the three inequalities we get:

$\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{x}\sqrt[4]{x}}+\dfrac{1}{\sqrt{y}\sqrt[4]{y}}+\dfrac{1}{\sqrt{z}\sqrt[4]{z}}\right)$

Note that the following can be obtained by Cauchy–Schwarz inequality:

$\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\le\sqrt{1+1+1}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt{3}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$

$\dfrac{1}{\sqrt{x}\sqrt[4]{x}}+\dfrac{1}{\sqrt{y}\sqrt[4]{y}}+\dfrac{1}{\sqrt{z}\sqrt[4]{z}}\le\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\sqrt{\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}}=\sqrt{3}\sqrt{\left(\sqrt{3}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}$

Putting these pieces together, and since we're told that $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$ we see that we have proved:

$\begin{align*}\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}&\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{x}\sqrt[4]{x}}+\dfrac{1}{\sqrt{y}\sqrt[4]{y}}+\dfrac{1}{\sqrt{z}\sqrt[4]{z}}\right)\\&\le \dfrac{1}{\sqrt{2}} \sqrt{3}\sqrt{\left(\sqrt{3}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}\\&\le \dfrac{3}{\sqrt{2}}\end{align*}$
 
anemone said:
Good job, MarkFL! And thanks for participating!...

You likely knew I would use cyclic symmetry just as surely as I knew you would use AM-GM. (Smirk)
 
MarkFL said:
You likely knew I would use cyclic symmetry just as surely as I knew you would use AM-GM. (Smirk)

LOL! That is very true!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top