Can inequality be proven with positive real numbers and fractions?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The discussion centers on proving the inequality for positive real numbers \(x\), \(y\), and \(z\) that satisfy the equation \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\). The goal is to demonstrate that \(\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}\le \dfrac{3}{\sqrt{2}}\). The participants engage in providing solutions and affirmations, highlighting the importance of mathematical rigor in proving inequalities involving real numbers and their fractions.

PREREQUISITES
  • Understanding of inequalities in mathematics
  • Familiarity with positive real numbers
  • Knowledge of algebraic manipulation
  • Basic principles of calculus, particularly limits and continuity
NEXT STEPS
  • Study the Cauchy-Schwarz inequality and its applications
  • Explore the properties of positive real numbers in inequalities
  • Learn about the AM-GM inequality and its proofs
  • Investigate advanced techniques in mathematical proofs involving fractions
USEFUL FOR

Mathematicians, students studying inequalities, and anyone interested in advanced algebraic proofs will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For the positive real numbers $x,\,y$ and $z$ that satisfy $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$, prove that

$\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}\le \dfrac{3}{\sqrt{2}}$.
 
Mathematics news on Phys.org
My solution:

Using cyclic symmetry, we find the extremum must occur for:

$$(x,y,z)=(1,1,1)$$

If we define:

$$f(x,y,z)=\frac{1}{\sqrt{x^3+1}}+\frac{1}{\sqrt{y^3+1}}+\frac{1}{\sqrt{z^3+1}}$$

then we obtain:

$$f(1,1,1)=\frac{3}{\sqrt{2}}$$

To determine the nature of the extremum, we pick another point on the constraint:

$$(x,y,z)=\left(2,\frac{4}{5},\frac{4}{5}\right)$$

And we find:

$$f\left(2,\frac{4}{5},\frac{4}{5}\right)=\frac{21+10\sqrt{105}}{63}<\frac{3}{\sqrt{2}}$$

Thus, the extremum is a maximum, and we may state:

$$f(x,y,z)\le\frac{3}{\sqrt{2}}$$
 
MarkFL said:
My solution:

Using cyclic symmetry, we find the extremum must occur for:

$$(x,y,z)=(1,1,1)$$

If we define:

$$f(x,y,z)=\frac{1}{\sqrt{x^3+1}}+\frac{1}{\sqrt{y^3+1}}+\frac{1}{\sqrt{z^3+1}}$$

then we obtain:

$$f(1,1,1)=\frac{3}{\sqrt{2}}$$

To determine the nature of the extremum, we pick another point on the constraint:

$$(x,y,z)=\left(2,\frac{4}{5},\frac{4}{5}\right)$$

And we find:

$$f\left(2,\frac{4}{5},\frac{4}{5}\right)=\frac{21+10\sqrt{105}}{63}<\frac{3}{\sqrt{2}}$$

Thus, the extremum is a maximum, and we may state:

$$f(x,y,z)\le\frac{3}{\sqrt{2}}$$

Good job, MarkFL! And thanks for participating!

My solution:

By AM-GM, we have $x^3+1\ge 2x\sqrt{x}$ so $\dfrac{1}{\sqrt{x^3+1}}\le\dfrac{1}{\sqrt{2}\sqrt{x}\sqrt[4]{x}}$. By the same token we also have $\dfrac{1}{\sqrt{y^3+1}}\le\dfrac{1}{\sqrt{2}\sqrt{y}\sqrt[4]{y}}$ and $\dfrac{1}{\sqrt{z^3+1}}\le\dfrac{1}{\sqrt{2}\sqrt{z}\sqrt[4]{z}}$.

Adding the three inequalities we get:

$\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{x}\sqrt[4]{x}}+\dfrac{1}{\sqrt{y}\sqrt[4]{y}}+\dfrac{1}{\sqrt{z}\sqrt[4]{z}}\right)$

Note that the following can be obtained by Cauchy–Schwarz inequality:

$\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\le\sqrt{1+1+1}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt{3}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}$

$\dfrac{1}{\sqrt{x}\sqrt[4]{x}}+\dfrac{1}{\sqrt{y}\sqrt[4]{y}}+\dfrac{1}{\sqrt{z}\sqrt[4]{z}}\le\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\sqrt{\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}}=\sqrt{3}\sqrt{\left(\sqrt{3}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}$

Putting these pieces together, and since we're told that $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$ we see that we have proved:

$\begin{align*}\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}&\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{x}\sqrt[4]{x}}+\dfrac{1}{\sqrt{y}\sqrt[4]{y}}+\dfrac{1}{\sqrt{z}\sqrt[4]{z}}\right)\\&\le \dfrac{1}{\sqrt{2}} \sqrt{3}\sqrt{\left(\sqrt{3}\sqrt{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\right)}\\&\le \dfrac{3}{\sqrt{2}}\end{align*}$
 
anemone said:
Good job, MarkFL! And thanks for participating!...

You likely knew I would use cyclic symmetry just as surely as I knew you would use AM-GM. (Smirk)
 
MarkFL said:
You likely knew I would use cyclic symmetry just as surely as I knew you would use AM-GM. (Smirk)

LOL! That is very true!
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K