MHB Can Jensen's Inequality Solve the Inequality Challenge III?

Click For Summary
The discussion focuses on proving the inequality \( e^{1/e} + e^{1/\pi} \geq 2e^{1/3} \) using the AM-GM inequality. It demonstrates that \( e^{1/e} + e^{1/\pi} \) can be bounded below by \( 2\sqrt{e^{1/e}e^{1/\pi}} \), leading to the conclusion that this expression exceeds \( 2e^{1/3} \). Additionally, a reference is made to using Jensen's inequality as an alternative method to solve the problem. The participants engage in mathematical reasoning to validate the inequality, emphasizing the effectiveness of both AM-GM and Jensen's approaches. The discussion highlights the interplay between different mathematical techniques in addressing inequality challenges.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $e^\dfrac{1}{e}_{\phantom{i}}+e^{\dfrac{1}{\pi}}_{\phantom{i}} \ge2e^{\dfrac{1}{3}}_{\phantom{i}}$.
 
Mathematics news on Phys.org
anemone said:
Show that $e^{1/e}+e^{1/\pi} \geqslant 2e^{1/3}$.
[sp]AM-GM: $e^{1/e}+e^{1/\pi} \geqslant 2\sqrt{\mathstrut e^{1/e}e^{1/\pi}} = 2\exp\Bigl(\frac12\bigl(\frac1e + \frac1\pi\bigr)\Bigr)$. By AM-GM again, $\frac12\bigl(\frac1e + \frac1\pi\bigr) \geqslant \sqrt{\frac1{e\pi}}.$ but $e<11/4$ and $\pi < 16/5$, so $e\pi <176/20 <9.$ Thus $\sqrt{e\pi} <3$, and $\sqrt{\frac1{e\pi}} > \frac13$. Therefore $2\exp\Bigl(\frac12\bigl(\frac1e + \frac1\pi\bigr)\Bigr) > 2e^{1/3}.$[/sp]
 
Last edited:
Thank you Opalg for participating!

Here is another method(not my own product) that used the Jensen inequality as the main weapon to crack this problem:

Consider the function $f(x)=e^{\dfrac{1}{x}}_{\phantom{i}}$ for $x>0$.

We have $f'(x)=-\dfrac{\dfrac{1}{x}}{e^{\dfrac{1}{x}}_{\phantom{i}}}<0$, and $f''(x)=e^{\dfrac{1}{x}}_{\phantom{i}}\left(\dfrac{2}{x^3}+\dfrac{1}{x^4} \right)>0$, hence $f$ is decreasing and convex.

By the Jensen Inequality formula, we have

$\dfrac{1}{2}(f(e)+f(\pi))\ge f\left( \dfrac{e+\pi}{2} \right)$

On the other hand, we have $\dfrac{e+\pi}{2}<3$ and since $f$ is decreasing, $f\left( \dfrac{e+\pi}{2} \right)>f(s)$ and from here the result follows.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K