MHB Can Nonsingular Matrices Be Generated by Multiplying and Adding?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $A$ and $B$ be nonsingular $n\times n$-matrices over a field $\Bbb k$. Show that for all but finitely many $x\in \Bbb k$, $xA + B$ is nonsingular.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was solved correctly by Opalg. You can read his solution below.
If $A$ is nonsingular then it has an inverse $A^{-1}$, and $xA+B = (xI + BA^{-1})A$. The matrix $BA^{-1}$ has at most $n$ distinct eigenvalues. If $-x$ is not one of those eigenvalues then $xI + BA^{-1}$ is invertible.

The product of two invertible matrices is invertible. Therefore if $-x$ is not an eigenvalue of $BA^{-1}$ then $xA+B$ is invertible. Hence there are only finitely many values of $x$ for which $xA+B$ is singular.
 
Back
Top