MHB Can Parallelograms Be Constructed in a Convex Hexagon?

  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Hexagon
maxkor
Messages
79
Reaction score
0
In a convex hexagon $ABCDEF$ exist a point $M$ such that $ABCM$ and $DEFM$ are parallelograms . Prove that exists a point $N$ such that $BCDN$ and $EFAN$ are also parallelograms.
 

Attachments

  • 154937.png
    154937.png
    2.1 KB · Views: 94
Mathematics news on Phys.org
Proof using vectors:

Let $\vec{a},\vec{b},\vec{c},\vec{d},\vec{e},\vec{f},\vec{m}$ be vectors representing the points $A,B.C,D,E,F,M$. Then $\vec{m} = \vec{c} + (\vec{a} - \vec{b})$. Therefore $$\vec{a} + \vec{c} - \vec{b} = \vec{d} + \vec{f} - \vec{e}$$ and so $$\vec{b} + \vec{d} - \vec{c} = \vec{a} + \vec{e} - \vec{f}.$$ Let $N$ be the point given by the vector $$\vec{n} = \vec{b} + \vec{d} - \vec{c}.$$ Then $N$ has the property that $BCDN$ and $EFAN$ are parallelograms.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top