B Can Relativistic Mass Create a Black Hole?

  • B
  • Thread starter Thread starter Aerodyn
  • Start date Start date
  • Tags Tags
    Relativity Speed
Aerodyn
Messages
4
Reaction score
1
Hello dear colleagues from the physics forum,

Following question came to my mind, can you tell me which statement (s) is/are wrong?.

Since relativistic mass is weighed with the Lorentz factor for an external observer, it is expected an increase with speed.

Such mass (m1) would tend to infinity with v=c, but before infinity it would go through the mass required to create a black hole. In addition, since the external observer would see the fast object contracted due to its speed, he would see a smaller object with a higher mass, which definitely would increase its density, creating the best conditions for a good black hole soup.

So the external observer would see m1 creating a black hole. What if now m1 decides to slow down until v=0? Would the external observer see m1 escaping from a black hole?

Thank you very much for four support on understanding this strange phenomenaAerodyn
 
Physics news on Phys.org
Aerodyn said:
can you tell me which statement (s) is/are wrong?
This:

Aerodyn said:
Such mass (m1) would tend to infinity with v=c, but before infinity it would go through the mass required to create a black hole. In addition, since the external observer would see the fast object contracted due to its speed, he would see a smaller object with a higher mass, which definitely would increase its density, creating the best conditions for a good black hole soup.
The relevant quantity for determining whether an object is a black hole is not its relativistic mass, so the entire quote above is wrong. Whether or not an object is a black hole is invariant, independent of any choice of reference frame. Since relativistic mass is not an invariant, but frame-dependent, it obviously cannot be what determines whether an object is a black hole.

The rest of your post is also wrong since it follows from the above error.
 
  • Like
Likes dextercioby and FactChecker
Also, relativistic mass is not used by most scientists for the last many decades. It basically fell out of favor even within Einstein's lifetime.
 
  • Like
Likes dextercioby and vanhees71
Aerodyn said:
can you tell me which statement (s) is/are wrong?.
A simple way to see that your reasoning fails is to note that, as seen by a neutrino emitted by the Sun, you are doing 99.99999...% of the speed of light. Do you feel like a black hole?

This kind of mistake is one of the reasons relativistic mass fell out of favour. It leads to too many problems by kind of implying that relativistic physics is just Newtonian physics with a few Lorentz gammas thrown in. It is not. The source of gravity in relativity is a thing called the stress-energy tensor, which includes rest mass and various other forms of energy, but its behaviour is significantly more complex than just relativistic mass, I'm afraid.
 
  • Like
Likes vanhees71, malawi_glenn, Nugatory and 3 others
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top