I Can Relativistic Matter Exist At Absolute Zero? - Explained

  • I
  • Thread starter Thread starter James William Hall
  • Start date Start date
  • Tags Tags
    Matter Relativistic
AI Thread Summary
Relativistic matter could theoretically exist at absolute zero, where classical momentum would be zero, but particles would not cease to exist. Absolute zero indicates no thermal energy, meaning particles are at rest relative to each other, yet rest energy, including mass and chemical potential, remains. The concept of reaching absolute zero presents challenges when considering quantum theory, although there are no logical issues in non-quantum scenarios. The discussion clarifies that particles retain energy at absolute zero, contrary to some misconceptions. Understanding these principles is crucial for exploring the behavior of matter under extreme conditions.
James William Hall
Gold Member
Messages
24
Reaction score
23
TL;DR Summary
A question about relativistic matter
If it were possible to obtain absolute zero, could relativistic matter exist when classical momentum would be zero? Would a particle cease to exist? I can't do the math. Thank you for reading my question.
 
Space news on Phys.org
I presume you are thinking of the rest energy/rest mass of a particle and have read that particles have no energy at absolute zero. The latter is incorrect - absolute zero just means no thermal energy, i.e. that all an object's particles are at rest with respect to each other, and not rotating or vibrating or anything like that. Rest energy (including mass, chemical potential, etc) would remain.

There are problems with reaching absolute zero even in principle once you introduce quantum theory, but there's no logical problem with it in non-quantum contexts.
 
Last edited:
  • Like
Likes PeterDonis and PeroK
Ibix said:
I presume you are thinking of the rest energy/rest mass of a particle and have read that particles have no energy at absolute zero. The latter is incorrect - absolute zero just means no thermal energy, i.e. that all an object's particles are at rest with respect to each other, and not rotating or vibrating or anything like that. Rest energy (including mass, chemical potential, etc) would remain.

There are problems with reaching absolute zero even in principle once you introduce quantum theory, but there's no logical problem with it in non-quantum contexts.
Thank you, Ibix.
 
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
The formal paper is here. The Rutgers University news has published a story about an image being closely examined at their New Brunswick campus. Here is an excerpt: Computer modeling of the gravitational lens by Keeton and Eid showed that the four visible foreground galaxies causing the gravitational bending couldn’t explain the details of the five-image pattern. Only with the addition of a large, invisible mass, in this case, a dark matter halo, could the model match the observations...
Hi, I’m pretty new to cosmology and I’m trying to get my head around the Big Bang and the potential infinite extent of the universe as a whole. There’s lots of misleading info out there but this forum and a few others have helped me and I just wanted to check I have the right idea. The Big Bang was the creation of space and time. At this instant t=0 space was infinite in size but the scale factor was zero. I’m picturing it (hopefully correctly) like an excel spreadsheet with infinite...

Similar threads

Back
Top