MHB Can the Combinatorial Fun Formula Be Proven Using Induction?

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Fun
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Show that:

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$

Hint:

Use:

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)$$

for an appropriate value of $x$.
 
Mathematics news on Phys.org
MarkFL said:
Show that:

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$

Hint:

Use:

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)$$

for an appropriate value of $x$.

Hi everyone, :)

\[(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)\]

\[\Rightarrow\int_{0}^{x}(1+x)^n\, dx=\int_{0}^{x}\sum_{k=0}^n\left({n \choose k}x^k \right)\, dx\]

\[\Rightarrow\frac{(1+x)^{n+1}}{n+1}-\frac{1}{n+1}=\sum_{k=0}^n\left({n \choose k}\frac{x^{k+1}}{k+1} \right)\]

Substitute \(x=-1\) and we get,

\[-\frac{1}{n+1}=\sum_{k=0}^n\left(\frac{(-1)^{k+1}}{k+1}{n \choose k} \right)\]

\[\Rightarrow 1-\frac{1}{n+1}=\sum_{k=1}^n\left(\frac{(-1)^{k+1}}{k+1}{n \choose k} \right)\]

\[\therefore \frac{n}{n+1}=\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)\]
 
in fact this also can be done using induction method

if you are interested ,I will do it later
 
Note that (I changed the exponent of $-1$ from $k-1$ to $k+1$, but this leaves the result unchanged) :
\[\sum_{k=1}^n \binom{n}{k} \cdot \tfrac{(-1)^{k+1}}{k+1} = \tfrac{1}{n+1}\cdot \sum_{k=1}^n \binom{n+1}{k+1} \cdot (-1)^{k+1} \]

since \[\binom{n}{k} \cdot \frac{n+1}{k+1} = \frac{n!}{k! \cdot (n-k)!} \cdot \frac{n+1}{k+1} = \frac{(n+1)!}{(k+1)! \cdot (n-k)!} = \frac{(n+1)!}{(k+1)! \cdot (n+1 - (k+1))!} = \binom{n+1}{k+1}\]

And now we have, by the binomial theorem:
\[\sum_{k=1}^n \binom{n+1}{k+1} \cdot (-1)^{k+1} = \sum_{k=2}^{n+1} \binom{n+1}{k} \cdot (-1)^{k} = (1-1)^{n+1} - \binom{n+1}{0} + \binom{n+1}{1} = n\]

thus
\[\sum_{k=1}^n \binom{n}{k} \cdot \tfrac{(-1)^{k+1}}{k+1} = \frac{n}{n+1}\]
 
I want to thank everyone that participated. (Yes)

Here is my solution (similar to that of PaulRS):

Begin with the binomial theorem as given with $x=-1$:

$$0=(1-1)^{n+1}=(-1+1)^{n+1}=\sum_{k=0}^{n+1}\left({n+1 \choose k}(-1)^k \right)$$

Use the identities $${n+1 \choose 0}=1$$ and $${n+1 \choose r}=\frac{n+1}{r}\cdot{n \choose r-1}$$ to write:

$$0=1+(n+1)\sum_{k=0}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)$$

$$0=1-(n+1)+(n+1)\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)$$

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$
 
I will use the induction and the following formula :
$C_\left (n,k\right )=C_\left (n-1,k\right )+C_\left (n-1,k-1\right )$
n=1
$\dfrac{-1^0}{1+1}C_\left (1,1\right )=\dfrac {1}{1+1}=\dfrac{1}{2}$
n=2
$\dfrac{-1^0}{1+1}C_\left(2,1\right )+\dfrac{-1^1}{2+1}C_\left(2,2\right)=\dfrac{2}{3}$
$=\dfrac{1}{2}+\dfrac{1}{2\times 3}$
n=3
$\dfrac{1}{2}C_\left(3,1\right)-\dfrac{1}{3}
C_\left(3,2\right)+\dfrac{1}{4}C_\left(3,3\right)=\dfrac{3}{4}$
$=\dfrac{2}{3}+\dfrac{1}{3\times 4}$
-------
-------
suppose n=n-1
$\dfrac{1}{2}C_\left (n-1,1\right)-\dfrac{1}{3}C_\left(n-1,2\right)+---+\dfrac{-1^{(n-2)}}{n}C_\left(n-1,n-1\right)=\dfrac{n-1}{n}$
$=\dfrac{n-2}{n-1}+\dfrac{1}{(n-1)\times n}$
n=n
$\dfrac{1}{2}C_\left (n,1\right)-\dfrac{1}{3}C_\left(n,2\right)+---+\dfrac{-1^{(n-1)}}{n+1}C_\left(n,n\right)=\dfrac{n}{n+1}$
$=\dfrac{n-1}{n}+\dfrac{1}{n\times (n+1)}$
so the proof is done !
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
3
Views
1K
Replies
1
Views
2K
Replies
9
Views
2K
Replies
21
Views
4K
Replies
1
Views
1K
Back
Top