Can the Combinatorial Fun Formula Be Proven Using Induction?

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Fun
Click For Summary
SUMMARY

The combinatorial identity $$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$ can be proven using mathematical induction. The proof involves establishing a base case for n=1, n=2, and n=3, followed by an inductive step that assumes the formula holds for n-1 and demonstrates it for n. The key combinatorial identity used is $$C(n,k)=C(n-1,k)+C(n-1,k-1)$$, which is essential for the inductive proof.

PREREQUISITES
  • Understanding of combinatorial coefficients, specifically binomial coefficients represented as $$C(n,k)$$.
  • Familiarity with mathematical induction as a proof technique.
  • Basic knowledge of alternating series and their properties.
  • Ability to manipulate algebraic expressions involving summations.
NEXT STEPS
  • Study the principles of mathematical induction in depth.
  • Explore advanced combinatorial identities and their proofs.
  • Learn about generating functions and their applications in combinatorics.
  • Investigate the properties of alternating series and their convergence.
USEFUL FOR

Mathematicians, students studying combinatorics, educators teaching proof techniques, and anyone interested in advanced mathematical identities and their proofs.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Show that:

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$

Hint:

Use:

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)$$

for an appropriate value of $x$.
 
Physics news on Phys.org
MarkFL said:
Show that:

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$

Hint:

Use:

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)$$

for an appropriate value of $x$.

Hi everyone, :)

\[(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)\]

\[\Rightarrow\int_{0}^{x}(1+x)^n\, dx=\int_{0}^{x}\sum_{k=0}^n\left({n \choose k}x^k \right)\, dx\]

\[\Rightarrow\frac{(1+x)^{n+1}}{n+1}-\frac{1}{n+1}=\sum_{k=0}^n\left({n \choose k}\frac{x^{k+1}}{k+1} \right)\]

Substitute \(x=-1\) and we get,

\[-\frac{1}{n+1}=\sum_{k=0}^n\left(\frac{(-1)^{k+1}}{k+1}{n \choose k} \right)\]

\[\Rightarrow 1-\frac{1}{n+1}=\sum_{k=1}^n\left(\frac{(-1)^{k+1}}{k+1}{n \choose k} \right)\]

\[\therefore \frac{n}{n+1}=\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)\]
 
in fact this also can be done using induction method

if you are interested ,I will do it later
 
Note that (I changed the exponent of $-1$ from $k-1$ to $k+1$, but this leaves the result unchanged) :
\[\sum_{k=1}^n \binom{n}{k} \cdot \tfrac{(-1)^{k+1}}{k+1} = \tfrac{1}{n+1}\cdot \sum_{k=1}^n \binom{n+1}{k+1} \cdot (-1)^{k+1} \]

since \[\binom{n}{k} \cdot \frac{n+1}{k+1} = \frac{n!}{k! \cdot (n-k)!} \cdot \frac{n+1}{k+1} = \frac{(n+1)!}{(k+1)! \cdot (n-k)!} = \frac{(n+1)!}{(k+1)! \cdot (n+1 - (k+1))!} = \binom{n+1}{k+1}\]

And now we have, by the binomial theorem:
\[\sum_{k=1}^n \binom{n+1}{k+1} \cdot (-1)^{k+1} = \sum_{k=2}^{n+1} \binom{n+1}{k} \cdot (-1)^{k} = (1-1)^{n+1} - \binom{n+1}{0} + \binom{n+1}{1} = n\]

thus
\[\sum_{k=1}^n \binom{n}{k} \cdot \tfrac{(-1)^{k+1}}{k+1} = \frac{n}{n+1}\]
 
I want to thank everyone that participated. (Yes)

Here is my solution (similar to that of PaulRS):

Begin with the binomial theorem as given with $x=-1$:

$$0=(1-1)^{n+1}=(-1+1)^{n+1}=\sum_{k=0}^{n+1}\left({n+1 \choose k}(-1)^k \right)$$

Use the identities $${n+1 \choose 0}=1$$ and $${n+1 \choose r}=\frac{n+1}{r}\cdot{n \choose r-1}$$ to write:

$$0=1+(n+1)\sum_{k=0}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)$$

$$0=1-(n+1)+(n+1)\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)$$

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$
 
I will use the induction and the following formula :
$C_\left (n,k\right )=C_\left (n-1,k\right )+C_\left (n-1,k-1\right )$
n=1
$\dfrac{-1^0}{1+1}C_\left (1,1\right )=\dfrac {1}{1+1}=\dfrac{1}{2}$
n=2
$\dfrac{-1^0}{1+1}C_\left(2,1\right )+\dfrac{-1^1}{2+1}C_\left(2,2\right)=\dfrac{2}{3}$
$=\dfrac{1}{2}+\dfrac{1}{2\times 3}$
n=3
$\dfrac{1}{2}C_\left(3,1\right)-\dfrac{1}{3}
C_\left(3,2\right)+\dfrac{1}{4}C_\left(3,3\right)=\dfrac{3}{4}$
$=\dfrac{2}{3}+\dfrac{1}{3\times 4}$
-------
-------
suppose n=n-1
$\dfrac{1}{2}C_\left (n-1,1\right)-\dfrac{1}{3}C_\left(n-1,2\right)+---+\dfrac{-1^{(n-2)}}{n}C_\left(n-1,n-1\right)=\dfrac{n-1}{n}$
$=\dfrac{n-2}{n-1}+\dfrac{1}{(n-1)\times n}$
n=n
$\dfrac{1}{2}C_\left (n,1\right)-\dfrac{1}{3}C_\left(n,2\right)+---+\dfrac{-1^{(n-1)}}{n+1}C_\left(n,n\right)=\dfrac{n}{n+1}$
$=\dfrac{n-1}{n}+\dfrac{1}{n\times (n+1)}$
so the proof is done !
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K