MHB Can the Combinatorial Fun Formula Be Proven Using Induction?

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Fun
AI Thread Summary
The discussion centers on proving the combinatorial identity $$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$ using mathematical induction. Participants outline a step-by-step approach, starting with base cases for n=1, n=2, and n=3, demonstrating the validity of the formula through specific calculations. The proof involves applying the combinatorial identity $$C(n,k)=C(n-1,k)+C(n-1,k-1)$$ to establish the relationship for n=n-1 and n=n. The discussion concludes with the successful demonstration of the identity through the induction method.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Show that:

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$

Hint:

Use:

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)$$

for an appropriate value of $x$.
 
Mathematics news on Phys.org
MarkFL said:
Show that:

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$

Hint:

Use:

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)$$

for an appropriate value of $x$.

Hi everyone, :)

\[(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)\]

\[\Rightarrow\int_{0}^{x}(1+x)^n\, dx=\int_{0}^{x}\sum_{k=0}^n\left({n \choose k}x^k \right)\, dx\]

\[\Rightarrow\frac{(1+x)^{n+1}}{n+1}-\frac{1}{n+1}=\sum_{k=0}^n\left({n \choose k}\frac{x^{k+1}}{k+1} \right)\]

Substitute \(x=-1\) and we get,

\[-\frac{1}{n+1}=\sum_{k=0}^n\left(\frac{(-1)^{k+1}}{k+1}{n \choose k} \right)\]

\[\Rightarrow 1-\frac{1}{n+1}=\sum_{k=1}^n\left(\frac{(-1)^{k+1}}{k+1}{n \choose k} \right)\]

\[\therefore \frac{n}{n+1}=\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)\]
 
in fact this also can be done using induction method

if you are interested ,I will do it later
 
Note that (I changed the exponent of $-1$ from $k-1$ to $k+1$, but this leaves the result unchanged) :
\[\sum_{k=1}^n \binom{n}{k} \cdot \tfrac{(-1)^{k+1}}{k+1} = \tfrac{1}{n+1}\cdot \sum_{k=1}^n \binom{n+1}{k+1} \cdot (-1)^{k+1} \]

since \[\binom{n}{k} \cdot \frac{n+1}{k+1} = \frac{n!}{k! \cdot (n-k)!} \cdot \frac{n+1}{k+1} = \frac{(n+1)!}{(k+1)! \cdot (n-k)!} = \frac{(n+1)!}{(k+1)! \cdot (n+1 - (k+1))!} = \binom{n+1}{k+1}\]

And now we have, by the binomial theorem:
\[\sum_{k=1}^n \binom{n+1}{k+1} \cdot (-1)^{k+1} = \sum_{k=2}^{n+1} \binom{n+1}{k} \cdot (-1)^{k} = (1-1)^{n+1} - \binom{n+1}{0} + \binom{n+1}{1} = n\]

thus
\[\sum_{k=1}^n \binom{n}{k} \cdot \tfrac{(-1)^{k+1}}{k+1} = \frac{n}{n+1}\]
 
I want to thank everyone that participated. (Yes)

Here is my solution (similar to that of PaulRS):

Begin with the binomial theorem as given with $x=-1$:

$$0=(1-1)^{n+1}=(-1+1)^{n+1}=\sum_{k=0}^{n+1}\left({n+1 \choose k}(-1)^k \right)$$

Use the identities $${n+1 \choose 0}=1$$ and $${n+1 \choose r}=\frac{n+1}{r}\cdot{n \choose r-1}$$ to write:

$$0=1+(n+1)\sum_{k=0}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)$$

$$0=1-(n+1)+(n+1)\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)$$

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$
 
I will use the induction and the following formula :
$C_\left (n,k\right )=C_\left (n-1,k\right )+C_\left (n-1,k-1\right )$
n=1
$\dfrac{-1^0}{1+1}C_\left (1,1\right )=\dfrac {1}{1+1}=\dfrac{1}{2}$
n=2
$\dfrac{-1^0}{1+1}C_\left(2,1\right )+\dfrac{-1^1}{2+1}C_\left(2,2\right)=\dfrac{2}{3}$
$=\dfrac{1}{2}+\dfrac{1}{2\times 3}$
n=3
$\dfrac{1}{2}C_\left(3,1\right)-\dfrac{1}{3}
C_\left(3,2\right)+\dfrac{1}{4}C_\left(3,3\right)=\dfrac{3}{4}$
$=\dfrac{2}{3}+\dfrac{1}{3\times 4}$
-------
-------
suppose n=n-1
$\dfrac{1}{2}C_\left (n-1,1\right)-\dfrac{1}{3}C_\left(n-1,2\right)+---+\dfrac{-1^{(n-2)}}{n}C_\left(n-1,n-1\right)=\dfrac{n-1}{n}$
$=\dfrac{n-2}{n-1}+\dfrac{1}{(n-1)\times n}$
n=n
$\dfrac{1}{2}C_\left (n,1\right)-\dfrac{1}{3}C_\left(n,2\right)+---+\dfrac{-1^{(n-1)}}{n+1}C_\left(n,n\right)=\dfrac{n}{n+1}$
$=\dfrac{n-1}{n}+\dfrac{1}{n\times (n+1)}$
so the proof is done !
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
1K
Replies
3
Views
1K
Replies
1
Views
2K
Replies
9
Views
3K
Replies
21
Views
4K
Replies
1
Views
1K
Back
Top