MHB Can the Combinatorial Fun Formula Be Proven Using Induction?

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Fun
Click For Summary
The discussion centers on proving the combinatorial identity $$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$ using mathematical induction. Participants outline a step-by-step approach, starting with base cases for n=1, n=2, and n=3, demonstrating the validity of the formula through specific calculations. The proof involves applying the combinatorial identity $$C(n,k)=C(n-1,k)+C(n-1,k-1)$$ to establish the relationship for n=n-1 and n=n. The discussion concludes with the successful demonstration of the identity through the induction method.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Show that:

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$

Hint:

Use:

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)$$

for an appropriate value of $x$.
 
Mathematics news on Phys.org
MarkFL said:
Show that:

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$

Hint:

Use:

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)$$

for an appropriate value of $x$.

Hi everyone, :)

\[(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)\]

\[\Rightarrow\int_{0}^{x}(1+x)^n\, dx=\int_{0}^{x}\sum_{k=0}^n\left({n \choose k}x^k \right)\, dx\]

\[\Rightarrow\frac{(1+x)^{n+1}}{n+1}-\frac{1}{n+1}=\sum_{k=0}^n\left({n \choose k}\frac{x^{k+1}}{k+1} \right)\]

Substitute \(x=-1\) and we get,

\[-\frac{1}{n+1}=\sum_{k=0}^n\left(\frac{(-1)^{k+1}}{k+1}{n \choose k} \right)\]

\[\Rightarrow 1-\frac{1}{n+1}=\sum_{k=1}^n\left(\frac{(-1)^{k+1}}{k+1}{n \choose k} \right)\]

\[\therefore \frac{n}{n+1}=\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)\]
 
in fact this also can be done using induction method

if you are interested ,I will do it later
 
Note that (I changed the exponent of $-1$ from $k-1$ to $k+1$, but this leaves the result unchanged) :
\[\sum_{k=1}^n \binom{n}{k} \cdot \tfrac{(-1)^{k+1}}{k+1} = \tfrac{1}{n+1}\cdot \sum_{k=1}^n \binom{n+1}{k+1} \cdot (-1)^{k+1} \]

since \[\binom{n}{k} \cdot \frac{n+1}{k+1} = \frac{n!}{k! \cdot (n-k)!} \cdot \frac{n+1}{k+1} = \frac{(n+1)!}{(k+1)! \cdot (n-k)!} = \frac{(n+1)!}{(k+1)! \cdot (n+1 - (k+1))!} = \binom{n+1}{k+1}\]

And now we have, by the binomial theorem:
\[\sum_{k=1}^n \binom{n+1}{k+1} \cdot (-1)^{k+1} = \sum_{k=2}^{n+1} \binom{n+1}{k} \cdot (-1)^{k} = (1-1)^{n+1} - \binom{n+1}{0} + \binom{n+1}{1} = n\]

thus
\[\sum_{k=1}^n \binom{n}{k} \cdot \tfrac{(-1)^{k+1}}{k+1} = \frac{n}{n+1}\]
 
I want to thank everyone that participated. (Yes)

Here is my solution (similar to that of PaulRS):

Begin with the binomial theorem as given with $x=-1$:

$$0=(1-1)^{n+1}=(-1+1)^{n+1}=\sum_{k=0}^{n+1}\left({n+1 \choose k}(-1)^k \right)$$

Use the identities $${n+1 \choose 0}=1$$ and $${n+1 \choose r}=\frac{n+1}{r}\cdot{n \choose r-1}$$ to write:

$$0=1+(n+1)\sum_{k=0}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)$$

$$0=1-(n+1)+(n+1)\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)$$

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$
 
I will use the induction and the following formula :
$C_\left (n,k\right )=C_\left (n-1,k\right )+C_\left (n-1,k-1\right )$
n=1
$\dfrac{-1^0}{1+1}C_\left (1,1\right )=\dfrac {1}{1+1}=\dfrac{1}{2}$
n=2
$\dfrac{-1^0}{1+1}C_\left(2,1\right )+\dfrac{-1^1}{2+1}C_\left(2,2\right)=\dfrac{2}{3}$
$=\dfrac{1}{2}+\dfrac{1}{2\times 3}$
n=3
$\dfrac{1}{2}C_\left(3,1\right)-\dfrac{1}{3}
C_\left(3,2\right)+\dfrac{1}{4}C_\left(3,3\right)=\dfrac{3}{4}$
$=\dfrac{2}{3}+\dfrac{1}{3\times 4}$
-------
-------
suppose n=n-1
$\dfrac{1}{2}C_\left (n-1,1\right)-\dfrac{1}{3}C_\left(n-1,2\right)+---+\dfrac{-1^{(n-2)}}{n}C_\left(n-1,n-1\right)=\dfrac{n-1}{n}$
$=\dfrac{n-2}{n-1}+\dfrac{1}{(n-1)\times n}$
n=n
$\dfrac{1}{2}C_\left (n,1\right)-\dfrac{1}{3}C_\left(n,2\right)+---+\dfrac{-1^{(n-1)}}{n+1}C_\left(n,n\right)=\dfrac{n}{n+1}$
$=\dfrac{n-1}{n}+\dfrac{1}{n\times (n+1)}$
so the proof is done !
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K