MarkFL
Gold Member
MHB
- 13,284
- 12
Show that:
$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$
Hint:
$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$
Hint:
Use:
$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)$$
for an appropriate value of $x$.
$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)$$
for an appropriate value of $x$.