Can the Combinatorial Fun Formula Be Proven Using Induction?

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Fun
Click For Summary

Discussion Overview

The discussion revolves around the proof of a combinatorial identity involving alternating sums of binomial coefficients. Participants explore the possibility of proving the identity using mathematical induction, with a focus on the specific formula given.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose using mathematical induction to prove the identity $$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$.
  • One participant indicates they will provide an inductive proof later in the discussion.
  • A participant shares a step-by-step approach to the proof, starting with base cases for n=1, n=2, and n=3, and then generalizing to n=n.
  • The proof involves the use of the binomial coefficient identity $$C(n,k)=C(n-1,k)+C(n-1,k-1)$$ and calculations for specific values of n.

Areas of Agreement / Disagreement

Participants appear to agree on the approach of using induction, but there is no consensus on the correctness of the proof provided, as no formal verification or challenge to the proof has been presented.

Contextual Notes

The discussion does not clarify all assumptions involved in the proof, and some steps in the inductive reasoning may depend on definitions or properties of binomial coefficients that are not explicitly stated.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Show that:

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$

Hint:

Use:

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)$$

for an appropriate value of $x$.
 
Physics news on Phys.org
MarkFL said:
Show that:

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$

Hint:

Use:

$$(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)$$

for an appropriate value of $x$.

Hi everyone, :)

\[(1+x)^n=\sum_{k=0}^n\left({n \choose k}x^k \right)\]

\[\Rightarrow\int_{0}^{x}(1+x)^n\, dx=\int_{0}^{x}\sum_{k=0}^n\left({n \choose k}x^k \right)\, dx\]

\[\Rightarrow\frac{(1+x)^{n+1}}{n+1}-\frac{1}{n+1}=\sum_{k=0}^n\left({n \choose k}\frac{x^{k+1}}{k+1} \right)\]

Substitute \(x=-1\) and we get,

\[-\frac{1}{n+1}=\sum_{k=0}^n\left(\frac{(-1)^{k+1}}{k+1}{n \choose k} \right)\]

\[\Rightarrow 1-\frac{1}{n+1}=\sum_{k=1}^n\left(\frac{(-1)^{k+1}}{k+1}{n \choose k} \right)\]

\[\therefore \frac{n}{n+1}=\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)\]
 
in fact this also can be done using induction method

if you are interested ,I will do it later
 
Note that (I changed the exponent of $-1$ from $k-1$ to $k+1$, but this leaves the result unchanged) :
\[\sum_{k=1}^n \binom{n}{k} \cdot \tfrac{(-1)^{k+1}}{k+1} = \tfrac{1}{n+1}\cdot \sum_{k=1}^n \binom{n+1}{k+1} \cdot (-1)^{k+1} \]

since \[\binom{n}{k} \cdot \frac{n+1}{k+1} = \frac{n!}{k! \cdot (n-k)!} \cdot \frac{n+1}{k+1} = \frac{(n+1)!}{(k+1)! \cdot (n-k)!} = \frac{(n+1)!}{(k+1)! \cdot (n+1 - (k+1))!} = \binom{n+1}{k+1}\]

And now we have, by the binomial theorem:
\[\sum_{k=1}^n \binom{n+1}{k+1} \cdot (-1)^{k+1} = \sum_{k=2}^{n+1} \binom{n+1}{k} \cdot (-1)^{k} = (1-1)^{n+1} - \binom{n+1}{0} + \binom{n+1}{1} = n\]

thus
\[\sum_{k=1}^n \binom{n}{k} \cdot \tfrac{(-1)^{k+1}}{k+1} = \frac{n}{n+1}\]
 
I want to thank everyone that participated. (Yes)

Here is my solution (similar to that of PaulRS):

Begin with the binomial theorem as given with $x=-1$:

$$0=(1-1)^{n+1}=(-1+1)^{n+1}=\sum_{k=0}^{n+1}\left({n+1 \choose k}(-1)^k \right)$$

Use the identities $${n+1 \choose 0}=1$$ and $${n+1 \choose r}=\frac{n+1}{r}\cdot{n \choose r-1}$$ to write:

$$0=1+(n+1)\sum_{k=0}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)$$

$$0=1-(n+1)+(n+1)\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)$$

$$\sum_{k=1}^n\left(\frac{(-1)^{k-1}}{k+1}{n \choose k} \right)=\frac{n}{n+1}$$
 
I will use the induction and the following formula :
$C_\left (n,k\right )=C_\left (n-1,k\right )+C_\left (n-1,k-1\right )$
n=1
$\dfrac{-1^0}{1+1}C_\left (1,1\right )=\dfrac {1}{1+1}=\dfrac{1}{2}$
n=2
$\dfrac{-1^0}{1+1}C_\left(2,1\right )+\dfrac{-1^1}{2+1}C_\left(2,2\right)=\dfrac{2}{3}$
$=\dfrac{1}{2}+\dfrac{1}{2\times 3}$
n=3
$\dfrac{1}{2}C_\left(3,1\right)-\dfrac{1}{3}
C_\left(3,2\right)+\dfrac{1}{4}C_\left(3,3\right)=\dfrac{3}{4}$
$=\dfrac{2}{3}+\dfrac{1}{3\times 4}$
-------
-------
suppose n=n-1
$\dfrac{1}{2}C_\left (n-1,1\right)-\dfrac{1}{3}C_\left(n-1,2\right)+---+\dfrac{-1^{(n-2)}}{n}C_\left(n-1,n-1\right)=\dfrac{n-1}{n}$
$=\dfrac{n-2}{n-1}+\dfrac{1}{(n-1)\times n}$
n=n
$\dfrac{1}{2}C_\left (n,1\right)-\dfrac{1}{3}C_\left(n,2\right)+---+\dfrac{-1^{(n-1)}}{n+1}C_\left(n,n\right)=\dfrac{n}{n+1}$
$=\dfrac{n-1}{n}+\dfrac{1}{n\times (n+1)}$
so the proof is done !
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K