MHB Can the Fourier Transform Prove the Fundamental Solution for a Heat Equation?

  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
SUMMARY

The Fourier transform demonstrates that the fundamental solution of the heat equation $\frac{\partial{E}}{\partial{t}}-a^2 \Delta{E}=\delta(t,x)$ is given by $E(t,x)=\frac{H(t)}{(2 a \sqrt{\pi t})^n} e^{-\frac{|x|^2}{4a^2 t}}$, where $H$ is the Heaviside function. By applying the operator $\left( \frac{\partial}{\partial t}-a^2 \Delta \right)$ to the Fourier integral, and utilizing the Fourier inversion theorem, the solution is derived. The process involves the n-dimensional Dirac delta function and the properties of the Fourier transform, confirming the relationship between the heat equation and its fundamental solution.

PREREQUISITES
  • Understanding of the Fourier transform and its properties
  • Familiarity with partial differential equations, specifically the heat equation
  • Knowledge of the Heaviside function and Dirac delta function
  • Basic concepts of functional analysis and distribution theory
NEXT STEPS
  • Study the properties of the Fourier transform in relation to differential equations
  • Explore the derivation of the heat equation using separation of variables
  • Learn about the application of the Fourier inversion theorem in solving PDEs
  • Investigate the role of distributions in mathematical analysis, focusing on the Dirac delta function
USEFUL FOR

Mathematicians, physicists, and engineers interested in solving partial differential equations, particularly those working with heat transfer and diffusion processes.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I want to show using the Fourier transform that the fundamental solution of $\frac{\partial{E}}{\partial{t}}-a^2 \Delta{E}=\delta(t,x), x \in \mathbb{R}^n$, is given by $E(t,x)=\frac{H(t)}{(2 a \sqrt{\pi t})^n} e^{-\frac{|x|^2}{4a^2 t}}$.

$H$ is the Heaviside function.

We have:$$\frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \widehat{\phi(\xi)} e^{i x \xi} d \xi=\phi(x)=\frac{\partial{E}}{\partial{t}}-a^2 \Delta E=\left( \frac{\partial}{\partial t}-a^2 \Delta \right)E=\left( \frac{\partial}{\partial t}-a^2 \Delta \right) \frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \hat{E}(\xi) e^{ix \xi} d \xi$$How can we continue?
 
Physics news on Phys.org
We can apply the operator $\left( \frac{\partial}{\partial t}-a^2 \Delta \right)$ to the integral and use the Leibniz rule:$$\left( \frac{\partial}{\partial t}-a^2 \Delta \right) \frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \hat{E}(\xi) e^{ix \xi} d \xi= \frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \left( \frac{\partial}{\partial t}-a^2 \Delta \right) \hat{E}(\xi) e^{ix \xi} d \xi= \frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \delta(t,x) e^{ix \xi} d \xi$$Using the Fourier inversion theorem, we have:$$\frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \delta(t,x) e^{ix \xi} d \xi = H(t) \delta^n (x)$$where $\delta^n(x)$ is the n-dimensional Dirac delta function.Now, using the Fourier transform of the fundamental solution, we have:$$\hat{E}(t,\xi)=\frac{H(t)}{(2 a \sqrt{\pi t})^n} e^{-\frac{|\xi|^2}{4a^2 t}}$$Finally, we can apply the inverse Fourier transform to get the desired result:$$E(t,x)=\frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \hat{E}(t,\xi) e^{-i x \xi} d \xi= \frac{H(t)}{(2 a \sqrt{\pi t})^n} e^{-\frac{|x|^2}{4a^2 t}}$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K