MHB Can the Fourier Transform Prove the Fundamental Solution for a Heat Equation?

  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
The discussion explores the use of the Fourier transform to demonstrate that the fundamental solution of the heat equation is given by the expression E(t,x) = H(t)/(2a√(πt))^n * e^(-|x|^2/(4a^2t)). The Heaviside function H(t) plays a crucial role in this solution. The process involves applying the operator (∂/∂t - a^2Δ) to the integral representation of the solution and utilizing the Leibniz rule. The Fourier inversion theorem is then employed to relate the delta function to the fundamental solution. Ultimately, the inverse Fourier transform confirms the desired result, validating the application of the Fourier transform in solving the heat equation.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I want to show using the Fourier transform that the fundamental solution of $\frac{\partial{E}}{\partial{t}}-a^2 \Delta{E}=\delta(t,x), x \in \mathbb{R}^n$, is given by $E(t,x)=\frac{H(t)}{(2 a \sqrt{\pi t})^n} e^{-\frac{|x|^2}{4a^2 t}}$.

$H$ is the Heaviside function.

We have:$$\frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \widehat{\phi(\xi)} e^{i x \xi} d \xi=\phi(x)=\frac{\partial{E}}{\partial{t}}-a^2 \Delta E=\left( \frac{\partial}{\partial t}-a^2 \Delta \right)E=\left( \frac{\partial}{\partial t}-a^2 \Delta \right) \frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \hat{E}(\xi) e^{ix \xi} d \xi$$How can we continue?
 
Physics news on Phys.org
We can apply the operator $\left( \frac{\partial}{\partial t}-a^2 \Delta \right)$ to the integral and use the Leibniz rule:$$\left( \frac{\partial}{\partial t}-a^2 \Delta \right) \frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \hat{E}(\xi) e^{ix \xi} d \xi= \frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \left( \frac{\partial}{\partial t}-a^2 \Delta \right) \hat{E}(\xi) e^{ix \xi} d \xi= \frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \delta(t,x) e^{ix \xi} d \xi$$Using the Fourier inversion theorem, we have:$$\frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \delta(t,x) e^{ix \xi} d \xi = H(t) \delta^n (x)$$where $\delta^n(x)$ is the n-dimensional Dirac delta function.Now, using the Fourier transform of the fundamental solution, we have:$$\hat{E}(t,\xi)=\frac{H(t)}{(2 a \sqrt{\pi t})^n} e^{-\frac{|\xi|^2}{4a^2 t}}$$Finally, we can apply the inverse Fourier transform to get the desired result:$$E(t,x)=\frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \hat{E}(t,\xi) e^{-i x \xi} d \xi= \frac{H(t)}{(2 a \sqrt{\pi t})^n} e^{-\frac{|x|^2}{4a^2 t}}$$
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K