Can the Mapping $F$ Always Interchange Two Points in a Unit Disk?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

The discussion revolves around the mapping \( F:z\mapsto \frac{w-z}{1-\overline{w}z} \) within the unit disk, proving that it satisfies key properties. Specifically, it establishes that if \( |z|<1 \) and \( |w|<1 \), then \( \left|\frac{w-z}{1-\overline{w}z}\right|<1 \). Additionally, it confirms that \( F \) maps the unit disk to itself, interchanges the points \( 0 \) and \( w \), maintains the unit circle, and is bijective. The solution provided clarifies these properties without ambiguity.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with the concept of holomorphic functions
  • Knowledge of the unit disk in complex analysis
  • Experience with mappings and bijections in mathematical contexts
NEXT STEPS
  • Study the properties of holomorphic functions in complex analysis
  • Explore the concept of conformal mappings and their applications
  • Learn about the Riemann mapping theorem and its implications
  • Investigate the behavior of functions on the unit circle
USEFUL FOR

Mathematicians, complex analysts, and students studying advanced calculus who are interested in the properties of mappings in the unit disk and their implications in complex analysis.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem.

-----

Problem: (a) Let $z,\,w$ be two complex numbers such that $\overline{z}w\neq 1$. Prove that\[\left|\frac{w-z}{1-\overline{w}z}\right|<1\quad\text{if $\left|z\right|<1$ and $\left|w\right|<1$,}\]
and also that
\[\left|\frac{w-z}{1-\overline{w}z}\right|=1\quad\text{if $\left|z\right|=1$ or $\left|w\right|=1$.}\]

(b) Prove that for a fixed $w$ in the unit disk $\mathbb{D}$, the mapping\[F:z\mapsto \frac{w-z}{1-\overline{w}z}\]
satisfies the following conditions:

(i) $F$ maps the unit disc to itself (that is, $F:\mathbb{D}\rightarrow\mathbb{D}$), and is holomorphic.
(ii) $F$ interchanges $0$ and $w$, namely $F(0)=w$ and $F(w)=0$.
(iii) $\left|F(z)\right|=1$ if $\left|z\right|=1$.
(iv) $F:\mathbb{D}\rightarrow\mathbb{D}$ is bijective. [Hint: Calculate $F\circ F$.]
-----

 
Physics news on Phys.org
There were no takers this week. Here's my solution.

(a) Proof: Consider the following:\[\begin{aligned}
\left|\frac{w-z}{1-\overline{w}z}\right|^2 &= \frac{w-z}{1-\overline{w}z}\frac{\overline{w}-\overline{z}}{1-w\overline{z}}\\ &= \frac{\overline{w}w-\overline{w}z-w\overline{z}+\overline{z}z}{1-\overline{w}z-w\overline{z}+\overline{w}w\overline{z}z}\\ &= \frac{(1-\overline{w} z-w\overline{z}+\overline{w}w\overline{z}z) + ( \overline{z} z+\overline{w}w-1-\overline{w}w\overline{z}z)}{1-\overline{w}z-w\overline{z}+\overline{w}w\overline{z}z}\\ &= 1-\frac{(1-\left|z\right|^2)+(\left|w\right|^2\left|z\right|^2-\left|w\right|^2)}{\left|1-\overline{w}z\right|^2}\\ &= 1-\frac{(1-\left|z\right|^2)(1-\left|w\right|^2)}{\left|1-\overline{w}z\right|^2}.
\end{aligned}\]
Now, if $\left|z\right|<1$ and $\left|w\right|<1$, then
\[1-\frac{(1-\left|z\right|^2)(1-\left|w\right|^2)}{\left|1-\overline{w}z\right|^2}<1-\frac{(1-1)(1-1)}{\left|1-\overline{w}z\right|^2}=1\]
since $\overline{z}w\neq 1$. If $\left|z\right|=1$ (or $\left|w\right|=1$), then
\[1-\frac{(1-\left|z\right|^2)(1-\left|w\right|^2)}{\left|1-\overline{w}z\right|^2}=1-\frac{(1-1)(1-\left|w\right|^2)}{\left|1-\overline{w}z\right|^2}=1.\]
Thus,
\[\left|\frac{w-z}{1-\overline{w}z}\right|^2<1 \implies \left|\frac{w-z}{1-\overline{w}z}\right|<1\]
and
\[\left|\frac{w-z}{1-\overline{w}z}\right|^2=1 \implies \left|\frac{w-z}{1-\overline{w}z}\right|=1.\]
This completes the proof. Q.E.D.

(b):
(i) Proof: Let $z\in\mathbb{D}\implies\left|z\right|<1$. Since $w\in\mathbb{D}$ is fixed (and $\left|w\right|<1$), it is clear that for each $z$, $F(z) = \dfrac{w-z}{1-\overline{w}z}\in\mathbb{D}$ since $\left|F(z)\right|<1$ by part (a). Therefore $F(\mathbb{D})\subseteq\mathbb{D}$. Now, since $F(z)$ is rational and $\left|1-\overline{w}z\right|>1-\left|w\right|\left|z\right|>0$ for each $z\in\mathbb{D}$, it follows that $F$ is holomorphic at each $z\in\mathbb{D}$. Q.E.D.

(ii) Proof: Clearly, $F(0)=\dfrac{w}{1}=w\quad\text{and}\quad F(w)=\dfrac{0}{1-\left|w\right|^2}=0$. Q.E.D.

(ii) Proof: This is a direct consequence of part (a) since $\left|w\right|\neq 1$ and $\left|z\right|=1$. Q.E.D.

(iv) Proof: It follows that\[\begin{aligned}
F\circ F(z) &= \frac{w-\dfrac{w-z}{1-\overline{w}z}}{1-\overline{w}\dfrac{w-z}{1-\overline{w}z}}\\ &= \frac{\dfrac{w-\left|w\right|^2z-w+z}{1-\overline{w}z}}{\dfrac{1-\overline{w}z-\left|w\right|^2+\overline{w}z}{1-\overline{w}z}}\\ &= \frac{z(1-\left|w\right|^2)}{1-\left|w\right|^2}\\ &= z\quad(\text{since $w\in\mathbb{D}\implies\left|w\right|<1$}.)
\end{aligned}\]
Thus, $F$ is bijective. Q.E.D.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K