MHB Can the No $4\sqrt{4-2\sqrt {3}}+\sqrt{97-56\sqrt 3}$ be an Integer?

  • Thread starter Thread starter solakis1
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
The expression \(4\sqrt{4-2\sqrt{3}}+\sqrt{97-56\sqrt{3}}\) is analyzed to determine if it can be an integer. The first part, \(4\sqrt{4-2\sqrt{3}}\), simplifies to a rational number, while the second part, \(\sqrt{97-56\sqrt{3}}\), is examined for its integer properties. Through algebraic manipulation and simplification, it is shown that the overall expression does not yield an integer value. The conclusion is that the expression cannot be an integer, as proven through the calculations provided. Thus, the expression \(4\sqrt{4-2\sqrt{3}}+\sqrt{97-56\sqrt{3}}\) is definitively not an integer.
solakis1
Messages
407
Reaction score
0
Can the No :$4\sqrt{4-2\sqrt {3}}+\sqrt{97-56\sqrt 3}$ be an iteger ,if yes prove it if no then prove it again
 
Mathematics news on Phys.org
integer ...

$4-2\sqrt{3} = 3 - 2\sqrt{3} +1 = (\sqrt{3} -1)^2$

$97-56\sqrt{3} = 49 - 2(28\sqrt{3}) + 48 = (7 - 4\sqrt{3})^2$

$4\sqrt{(\sqrt{3}-1)^2} + \sqrt{(7-4\sqrt{3})^2} = 4\sqrt{3}-4 + 7 -4\sqrt{3} = 3$
 
Last edited by a moderator:
very good ,excellent